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Outline

Statistics as inductive logic

Bayesian statistics

Frequentist Hypothesis Testing
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Learning goals

• Understand why statistical testing is central to scientific work
• Key problems in statistical analysis
• Main differences in Bayesian and frequentist statistical analysis

3 / 47



Motivation for this topic

Leo Heldt, University of Zurich
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Reasons for replication crisis

• HARKing (Hypothesizing After Results are Known)
• Low power
• p-hacking
• Publication bias
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Know the rules of the game
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Recapitulation of probability lecture

• Probability is an abstract concept
• Probability theory is purely deductive (deducted from Kolmogoroff’s
axioms)

• Bayes’ Theorem
• P(H|D) ∝ P(D|H)× P(H) or
Posterior ∝ Likelihood × Prior

• P(H|D) = P(D|H)×P(H)
P(D)

• Formula for multiple hypotheses:

P(H1|D) =
P(D|H1)× P(H1)∑n
i=1(P(D|Hi)× P(Hi))

• Ratio form:
P(H1|D)
P(H2|D)

=
P(D|H1)

P(D|H2)
× P(H1)

P(H2)
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Key concepts of today’s lecture

• Probability theory versus statistical inference
• Bayesian versus frequentist hypothesis testing
• Measures of confidence: Posterior probability versus P-value
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Independent experiments and sampling

Sampling: Let Ω be a finite set objects and A a subset. If we sample one
object at random, we sample an object from A with probability

P(A) = Number of elements in A
Number of elements in Ω

We denote the number of elements in a set A with |A|.
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Independent experiments and sampling

Independence: Two experiments are independent if for each sets of
outcomes A from Experiment 1 and B from Experiment 2 we have

P(B|A) = P(B) ⇔ P(A|B) = P(A) ⇔ P(A ∩ B) = P(A)P(B)
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Independent experiments and sampling

Sampling with replacement: Let Ω be a finite set of objects. If we sample
one element with replacement, we draw one object at random from Ω

and replace it with an identical object (‘put’ it back)⇒ Probability of
sampling objects 1, ..., k with replacement from sets A1, . . . , Ak is

P(A1) · · ·P(Ak)
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Binomial distribution

Consider an urn with red and green balls (= set of objects Ω with either
trait A or B).

The frequency of red balls is p(= |A|
|Ω|), the frequency of green balls is

(1− p)(= |B|
|Ω|).

We draw n times with replacement. Then the probability of drawing k
red balls and n− k green balls (in any order) is

P(k red balls) = n!
k!(n− k)!p

k(1− p)n−k.
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Example calculation

Setup of urn: p(red ball) = p(green ball) = 0.5

Outcome of an experiment (n = 5)
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Statistics as inductive logic

Bayesian statistics

Frequentist Hypothesis Testing
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Statistics as inductive logic

Bayesian statistics

Frequentist Hypothesis Testing
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• Statistics is applied inductive logic
• Statistics infers from a sample to the population
• Two goals parameter estimation of model and hypothesis testing
• Two main schools of testing procedures: Bayesian and frequentist
testing

• Issues: Small sample size, correct data for hypothesis testing
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Statistics as inductive logic

Bayesian statistics

Frequentist Hypothesis Testing
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Example of a marble experiment

Setup:

• Flip a fair coin.
• If heads, place in an urn 1 white and 3 blue marbles
• If tails, place in an urn 3 white and 1 blue marbles

Hypothesis:

• HB: 1 white and 3 blue marbles (WBBB)
• HW: 3 white and 1 blue marbles (WWWB)

Purpose: To determine which hypothesis, HB or HW, is probably true.

Experiment: Mix the marbles, draw a marble, observe its color, and replace it,
repeating this procedure as necessary.

Stopping rule: Stop when a hypothesis reaches a posterior probability of 0.999
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Analysing the experiment with a Bayesian approach

Which hypothesis is more likely? → Use ratio form of Bayes’s rule:
P(HB|D)
P(HW|D)

=
P(D|HB)
P(D|HW)

× P(HB)
P(HW)

Prior probabilities: P(HB) = P(HW) = 0.5

Likelihood function for one draw:

• HB (WBBB): P(blue|HB) = 3/4 = 0.75

• HW (WWWB): P(blue|HW) = 1/4 = 0.25

Likelihood for two draws (sampling with replacement):

• HB (WBBB): P(blue,blue|HB) = (3/4)2 = 0.5625

• HW (WWWB): P(blue,blue|HW) = (1/4)2 = 0.0625

In a (n+ 1) draw experiment the posterior odds of the n-draw
experiment is the prior to the (n+ 1) draw experiment
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How many trials before accepting a hypothesis?

• Quantity M: number of blue draws - number of white draws
• Since probabilities of HB and HW are 3:1, posterior odds of HB : HW
are 3M : 1

• Odds are >999:1 in favor of HB when M = 7 (1:999< when M = −7)
• L ≈ 2M trials are necessary for a given confidence level (on average).
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Terminology for Bayesian statistics

P(HB|D)
P(HW|D)︸ ︷︷ ︸
odds ratio

=
P(D|HB)
P(D|HW)︸ ︷︷ ︸

Bayes factor

× P(HB)
P(HW)︸ ︷︷ ︸

prior odds

• Bayes factor: Ratio of the likelihoods. How many times more
probable is it to see the data under HB than under HW?

• Odds ratio: Ratio of the posterior probabilities. How many times
more probable is HB compared with HW given the observed data

• If the odds ratio is smaller than 1 (e.g., 0.1), it is convenient to say
that HW is 1

odds ratio times more probable than HB (e.g., (0.1)
−1 =10

times more probable) given the data
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Possible problems with the Bayesian approach

• Controversial background information
• Messy data
• Wrong hypotheses
• Different statistical methods
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Statistics as inductive logic

Bayesian statistics

Frequentist Hypothesis Testing
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The Frequentist Paradigm

• Bayesian paradigm preceded frequentist paradigm by ca. 200 years
• Goal: Get rid of Bayesian prior, make statistics more objective
• R. A. Fisher one of the key proponents of Frequentists
• Jerzy Neyman and E. S. Pearson developed frequentist hypothesis
testing with an emphasis on falsification

• Karl Popper developed falsification theory
• Most scientists started to use frequentist paradigm
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Pioneers of Frequentist analysis

R. A. Fisher (1890-1962)
Karl Popper (1902-1994)
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Basics of frequentist hypothesis testing

Null Hypothesis (H0): e.g.: There is no effect of various treatments, locus
is in Hardy-Weinberg equilibrium,...

Alternative Hypothesis (H1): e.g.: There is a treatment effect, locus is not
in Hardy-Weinberg equilibrium

Null hypothesis is true or false

Statistical tests accept or reject the null hypothesis

To accept means to not reject

Hypothesis testing takes place in an explicit setup (e.g. fixed stopping
rule, fixed hypotheses, ...)
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Errors in testing

A frequentist’s test chooses between H0 and H1. The decision is based
on the sampled data and may not be correct. Two types of errors are
possible:

H0

Decision True False

Accept Success Type II Error
Reject Type I Error Success

• False Positive (Type I Error)→ Reject a null hypothesis even it is
true.

• False Negative (Type II Error)→ Accept a null hypothesis even it is
false.
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Example of false positives and negatives

H0: A fungicide does not protect a plant (→ Treatment has no effect)

False positive error (Type I): Conclude that a fungicide protects a plant
even it does not (H0 is true)

False negative error (Type II: Conclude that a fungicide does not protect
a plant even though it does (H0 is false)
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Source: Unknown
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Example of false positives and negatives

H0: Person is not pregnant

False positive error (Type I): Conclude that person is pregnant even so
he is not (H0 is true)

False negative error (Type II: Conclude that person is not pregnant even
though she is (H0 is false)
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Trade-Off between Type I and Type II Error

• Avoid any Type I Error: Accept null hypothesis in any case
• Avoid any type II error: Reject null hypothesis in any case

→ Both approaches are not useful

• Solution: Accept certain probability α of Type I error (significance
level)

• Assign p value: Probability of a Type I error for the results a given
experiment

• Small p - value: Strong rejection of null hypothesis.

How to calculate the p value: Repeat the experiment infinite times
under the assumption that H0 is true and find the probability of getting
an outcome as extreme or more extreme than actual experimental

outcome
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A frequentist analysis of the urn experiment

• Null hypothesis HW: Three white and one blue marble
• Alternative hypothesis HB
• Arbitrary selection of a null hypothesis! But: Choice of null
hypothesis influences test interpretation

• No assumption about prior
• Choose significance level α
• Describe outcome of experiments by test statistic T = number of
blue draws

• Hypothesis test: Calculate p-value as P(T ≥ t | HW), where t is the
actual value of T in the experiment. Reject HW if p ≤ α
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A frequentist analysis of the urn experiment

• 15 draws, the table shows the possible 16 outcomes of T
• Average of 15× 0.25 = 3.75 draws of blue is expected given HW
• Exact calculation with b, w and n = b+ w draws (given HW):

pb =
n!

b!× w! × 0.25b × 0.75w

⇒ Binomial distribution
• Probability for 5 blue and 10 white draws (given HW):

15!

5!× 10!
× 0.255 × 0.7510

• If t blue draws are observed, p-value is p =
∑

b≥t pb
• This test paradigm is called binomial test
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A frequentist analysis of the urn experiment
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Interpretation of the p-value table

• Assume in 15 draws we have 8 draws of the blue marble
• The exact probability to draw 8 marbles under HW is 0.013106
• The probability to draw 8 marbles or more is 0.01729, calculated as
the sum of the individual probabilities for 8 to 15 blue draws.

• This sum is the p-value
• If we assign α = 0.05 we can state that if we draw 8 or more blue
marbles, we reject HW because p-value < α

36 / 47



p-values vs. effect sizes

• A highly significant test result (=very low p-value) just gives the
information that we can distinguish very well between the null and
alternative hypotheses using our inference rule (=test) and our data

• It does not state whether the difference between the hypotheses is
very big or not

• Given enough data, even very minor differences between
hypotheses can be highly significant
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p-values vs. effect sizes

Example: Consider two sets of two urns:

Experiment 1: Urn A1 has 9 blue marbles and 1 white marble (H1), Urn A2 has 1
blue marble and 9 white marbles (H0). In 3 draws three 3 blue
marbles were obtained.
⇒ p-value: (0.1)3 = 0.001

Experiment 2: Urn B1 has 6 blue and 4 white marbles (H1), Urn B2 has 5 blue and 5
white marbles (H0). In 12 draws 12 blue marbles were obtained.
⇒ p-value: (0.5)12 ≈ 0.00024

• Chance to make a Type I error is lower in the second experiment
• But: Difference between the hypotheses is much smaller in the
second experiment!
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Issues: ’Bayesian’ misreading of frequentist hypothesis test

• Bayesian testing: P(H|D)
• Frequentist testing: P(D|H)
• Frequentist testing does not say which hypothesis is more probable
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Issues: The influencal stopping rule

• A p value depends on the data and the stopping rule
• Example:
• Stop at 15 draws→ 16 outcomes
• Stop at 11 blue draws→ ∞ outcomes
• Stop at 4 white draws→ ∞ outcomes

• Same data but different outcomes!
• Computer software never asks for the stopping rule (assumptions
are usually implemented)
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Comparison of Bayesian and frequentist approaches

• Bayesian statistics: What is the probability that a hypothesis is
true, given the data and any prior knowledge?

• Frequentist statistics: How reliable is an inference procedure, by
virtue of not rejecting a true hypothesis or accepting a false
hypothesis?
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Bayesian vs. frequentist statistics

Bayesian statistics:

1. Answers the question about probability of hypotheses given data directly

2. Compares several hypotheses

3. Needs a prior distribution

4. Does not need a stopping rule

Frequentist statistics:

1. An inference scheme which has a certain quality: Controlled type I error

2. Can compare hypotheses, but also test whether a null hypothesis can be rejected
without specifying an alternative (H = H0 vs. H ̸= H0)

3. Does not need a prior

4. Needs a stopping rule
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Summary

• Induction ≈ statistics
• Bayesian statistics
• Frequentist statistics
• Frequentist vs. Bayesian statistics
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Further reading

• Hugh G. Gauch (2012) - Scientific Method in Brief. Cambridge
University Press, Chapter 9

• Colquhoun (2017) An investigation of the fale discovery rate and the
misinterpretation of p-values. R. Soc. Open Sci. 1:140216

• Nuzzo (2014) Statistical Errors. Nature 506:150-152
• Lakens (2022) Why P values are not measures of evidence. Trends in
Ecology and Evolution 37:289-290

• Nature Methods: Statistics for biologists. Excellent collection of
short essays on different aspects of statistics.
http://www.nature.com/collections/qghhqm
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Study questions i

• List the pros and cons for Bayesian and frequentist statistics
• We redo the marble experiment. This time, we only draw 4 times
and we see the following sample: blue,blue,blue,white. Do a
Bayesian and a frequentist’s test for deciding whether this sample
gives evidence for HW or HB. For the Bayesian test, just give the
posterior probability ratio, for the frequentist’s test compute the
p-value
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http://www.nature.com/collections/qghhqm


Study questions ii

• We want to test (in the frequentist’s way) whether a locus is in
Hardy-Weinberg equilibrium and formulate the hypotheses
H0: Locus is in HWE
H1: Locus is not in HWE
What are the possible Type I and Type II errors for these
hypotheses? Remark: You don’t have to formulate a test, just
describe the possible errors.
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