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Probability and Statistics

• Probability theory is derived from deductive logic
• Statistics is derived from inductive logic
• Both are tools for inference
• Many decisions are based on more or less conscious
probabilistic arguments

• Misuse and abuse of probability and statistics is common...
• ...even in science
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Conceptual ideas of probability

• Objective or physical probability: Chance of an event
occurring

• Subjective, personal or epistemic probability: Degree of
belief in a proposition warranted by experience
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Different meanings of probability

Gauch (2003)
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Interpretation of statements

• (1): Deductive; apodictive; self-evidently true
• (2): Empirical statement without evidence
• (3): Empirical statement with source of evidence (but not
evidence itself)

• (4): Probability refers to knowledge not the fact itself;
probability may change with additional knowledge

• (5): Relative probability, but information is incomplete
• (6): Subjective estimation of probability, no evidence given
• (7): Probability as basis for decisions and actions; value is
part of cost/benefit analysis

• (8): Induction: Comparison of two singular observations,
derive general conclusion
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Aspects in the definition of probability

• Events versus beliefs
• Repeatable versus single events
• Expression in exact numbers versus inexact beliefs
• A function of one argument (event) or two arguments
(event and evidence)

• Combine or not combine old and new information?
• Effects of ignorance versus knowledge on probability
statements

• Combination of theoretical and empirical aspects of
probability

• Connection between deductive and inductive
applications?

• Single theory of probability for all situations possible?
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Fundamental requirements of probability

• Generality: Works for all cases and persons
• Impartiality: Must be fair to all hypotheses

Eight general rules for a concept of probability
• Explicit
• Coherent / self consistent
• Practical: Experiments should be possible
• Revisable
• Empirical: Conclusions must be dominated by evidence
• Parsimonious: Number of axioms should be small
• Human: Compatible with humaness and imperfection
• Not perfectionistic: Take care of experimental error
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First candidate: Relative frequencies

Consider a (finite) set of objects with different traits A, B, . . ..
Define the relative frequency of trait A as

fr(A) = number of objects in the set with trait A
total number of objects in the set

The relative frequency of objects with a specific trait observed
so far should be a predictor for the number of objects with the
trait among a set of newly observed objects.

Assumption: UN principle (uniformity of nature)
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Properties of relative frequencies

• Relative frequencies are values ≥ 0

• Relative frequency of objects with any trait is 1
• fr(A or B) = fr(A) + fr(B) for mutually exclusive traits A and
B

This is the basis of the concept of probability
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Axiomatic definition of probability

Probability axioms from Kolmogoroff (1930’s):

• (1) Probability of getting a particular outcome is expressed
as value ≥ 0

• (2) Probability of getting any possible outcome is 1
• (3) Probability of getting either of two mutually exclusive
outcomes equals the sum of the probabilities of these
outcomes.
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Axiomatic definition of probability - Example

Toss two coins. We set the probability for each of the four
outcomes 1

4 .

• The probability of getting two heads is 1/4
• The probability of getting any outcome, namely two heads
or two tails or else one heads and one tails, is 1.

• The probability of getting two heads, or else one heads
and one tails is 1/4 + 1/2 = 3/4
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Do these statements make sense?

• (1) The probability of an ideal fair coin landing heads is 1/2
• (2) The probability of an actual fair coin landing heads is
nearly 1/2

• (3) The probability that my belief “The fair coin will land
heads” will be true is 1/2.

Apply concepts to

• abstract entities
• actual events
• personal beliefs

→ Theory serves all ordinary and scientific applications
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Formal definition of probability axioms

First, some formal definitions:

• Two sets A = {1, 2} and B = {2, 3, 4}
• Union: A ∪ B = {1, 2, 3, 4}
• Intersection: A ∩ B = {2}
• Subset: {2} of {1, 2} but not of {3, 4}
• Mutually exclusive: C = {2} and D = {3, 4}. Formally,
mutual exclusivity is written as C ∩ D = ∅ (empty set)

• Complement: All possible outcomes form the set Ω. Let A
be a subset of Ω. The complement ¬A of A consists of all
outcomes in Ω which are not in A.
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Kolmogoroff’s axioms in formal language

Let Ω be a (finite) set of outcomes and A, B subsets. P is a
probability measure if

• 0 ≤ P(A)
• P(Ω) = 1

• If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B)

Advantages of (formal) probability theory:

• Thoughts have common structure and predictability
• Thinking is public→ common understanding is possible
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Conditional probability

• Probability of H given D: P(H|D)
• H: Hypothesis; D: Data (both are subsets of outcomes,
P(D) > 0)

• Definition of conditional probability:

P(H|D) = P(H ∩ D)
P(D)

• Interpretation: Knowing the actual outcome of an
experiment is in D, what is the probability that an
outcome of H has happened?
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Example of conditional probability

Assume that we search for a genebank accession resistant against a
pathogen.

For this, we screen 100 accessions for disease symptoms after
infecting them with the pathogen

Goal: Calculate conditional probability of no symptoms given an
accession is resistant

No symptoms Symptoms Marginal

Resistant 4 1 5
Susceptible 5 90 95

Marginal 9 91 100
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Example of conditional probability

No symptoms Symptoms Marginal

Resistant 4 1 5
Susceptible 5 90 95

Marginal 9 91 100

Unconditional probability that accession without symptom is
resistant: 9

100 = 0.09

Conditional probability of accession:

• P(No Symptom ∩ Resistant) = 4
100 = 0.04

• P(Resistant) = 5
100 = 0.05

Then:

P(No Symptom|Resistant) = P(No Symptom ∩ Resistant)
P(Resistant) =

0.04

0.05
= 0.8
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Probability in action: Deduction of conclusions

Conclusion 1: P(¬A) = 1− P(A)

Proof: A and ¬A are mutually exclusive (A ∩ ¬A = ∅) and
A ∪ ¬A = Ω.

1 = P(Ω) = P(A) + P(¬A)
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Probability in action: Deduction of conclusions

Conclusion 2: P(B) = P(B|A)P(A) + P(B|¬A)P(¬A)

Proof: B = (A ∩ B)︸ ︷︷ ︸
:=C

∪ (¬A ∩ B)︸ ︷︷ ︸
:=D

. C and D are mutually exclusive,

so
P(B) = P(C) + P(D) = P(B|A)P(A) + P(B|¬A)P(¬A),

since P(C) = P(A ∩ B) = P(B ∩ A) = P(B|A)P(A) by the definition
of conditional probability and analogously
P(D) = P(B|¬A)P(¬A)

All theorems and techniques in probability theory are
deducted from the probability axioms in this way
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Bayes’ Theorem

• Reverend Thomas Bayes (1702 - 1761)
• Describes the degree of confidence given prior evidence

Simple form of Bayes’ Theorem:
P(H|D) ∝ P(D|H)× P(H) or

Posterior ∝ Likelihood × Prior
• Bayes’ Theorem, complete form

P(H|D) = P(D|H)P(H)
P(D) =

P(D|H)P(H)
P(D|H)P(H) + P(D|¬H)P(¬H)

25 / 42

A proof of Bayes’ Theorem i

• Theorem: P(H|D) = P(D|H)×P(H)
P(D)

• Rearrange definition of conditional probability:

P(H ∩ D) = P(H|D)× P(D)

• Second application with H and D reversed:

P(D ∩ H) = P(D|H)× P(H)

• H ∩ D and D ∩ H are same set, so

P(H ∩ D) = P(D ∩ H)

• Equate the formulas to obtain

P(H|D)× P(D) = P(D|H)× P(H)
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A proof of Bayes’ Theorem ii

• Ignore normalizing constant, P(D) and substitute
proportionality for equality, we get Bayes’ theorem in
simple form

• Use Conclusion 2 to get the complete form
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Important terms in Bayes’ Theorem

P(H|D) ∝ P(D|H)× P(H)

• P(H): Prior probability or just prior
• P(D|H): Likelihood. Data’s impact on the probabilities of
hypotheses

• P(H|D): Posterior probability or posterior
Bayes’ theorem solves the inverse or inductive prob-
lem of calculating the probability of a hypothesis given
some data P(H|D) from the probability of some data
given a hypothesis (D|H)
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Bayes’ Theoremwith competing, mutually exclusive hypotheses

• Formula for two hypotheses (H2 = ¬H1):

P(H1|D) =
P(D|H1)× P(H1)

(P(D|H1)× P(H1)) + (P(D|H2)× P(H2))

• Formula for multiple hypotheses:

P(H1|D) =
P(D|H1)× P(H1)∑n
i=1(P(D|Hi)× P(Hi))

• The ratio form compares hypotheses in forms of ratios or
odds:

P(H1|D)
P(H2|D)

=
P(D|H1)

P(D|H2)
× P(H1)

P(H2)
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Exercising...

Consider a biallelic locus with alleles A1, A2 in a diploid
population which consists of two subpopulations of equal size.

• In Subpopulation 1, 50 % of the (sub)population is
heterozygous (of genotype A1A2) at the observed locus

• In Subpopulation 2, 25 % of the (sub)population is
heterozygous

Pick an individual at random from the population. It’s
heterozygous at the observed locus. What’s the probability
that it originates from Subpopulation 1?
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Solution i

Define

• H := picked individual is from Subpopulation 1
• D := picked individual is heterozygous

We already know

• P(H) = P(¬H) = 0.5, since both subpopulations are equal
in size

• P(D|H) is the probability that, if we pick from
Subpopulation 1, we pick a heterozygous individual, which
is the frequency of heterozygotes in SP1, hence
P(D|H) = 0.5. Analogously P(D|¬H) = 0.25, since this is the
the probability that, if we pick from Subpopulation 2, we
pick a heterozygous individual
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Solution ii

We want to compute P(H|D). Using Bayes’ Theorem,

P(H|D) = P(D|H)P(H)
P(D|H)P(H) + P(D|¬H)P(¬H) =

0.5 · 0.5
0.5 · 0.5 + 0.25 · 0.5

=
2

3
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Common errors in probability theory

• Ignored prior
• Ignored condition
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Ignored prior i

You have a test for some rare disease which occurs by chance in 1 in
every 100,000 trees (e.g., mango Mangifera indica). The test is fairly

reliable; if a tree has the disease it will correctly say so with
probability 0.95; if a tree does not have the disease, the test will
wrongly say it does with probability 0.005. If the test says your tree
will suffer from the disease, what is the probability that this is a

correct diagnosis? Is it 0.95?← blunder

Solution:

• Probability that your tree has the disease, P(D) = 0.00001

• Probability that your tree does not have the disease,
P(¬D) = 0.99999
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Ignored prior ii

• Probability of positive test when the tree has the disease,
P(T|D) = 0.95

• Probability of positive test when the tree is healthy,
P(T|¬D) = 0.005

• Probability of disease given positive test result:

P(D|T) =
P(T|D)× P(D)

P(T|D)× P(D) + P(T|¬D)× P(¬D)

=
0.95× 0.00001

(0.95× 0.00001) + (0.005× 0.99999)

≈ 0.002

Keep in mind: P(T|D) ̸= P(D|T)!
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Ignored condition i

Consider:

• A plant may be resistant to two pathogens P1 and P2

• P(P1resistance) = P(P2resistance) = 0.5

• Four possibilities of resistances: none, P1(= (P1,¬P2)),
P2(= (P2,¬P1)), (P1,P2)

• We assume that resistance to each pathogen is independent
from the other resistance:
P(P1,P2) = 0.52 = 0.25 = P(P1) = P(P2) = P(none)

• Question 1: What is the probability a plant has both
resistances? Answer: Prob = 1/4
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Ignored condition ii

• Question 2: A plant has one of the resistances. What is the
probability that it also has the other resistance? Is it again 1

4? Is
it 1

2? ← blunder
Answer: no resistance is not possible; hence: P1,P2, P1, P2
→ Prob = 1/3

Formal derivation using conditional probability

• X: There is at least one resistance

• Y: P1P2 resistance

• P(X) = 3/4 (3 of 4 combinations have a resistance)

• P(X ∩ Y) = 1/4 (only 1 of 4 has both resistances)

• Hence: P(Y|X) = P(X ∩ Y)/P(X) = (1/4)/(3/4) = 1/3
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Summary

• Probability is useful for deduction and induction
• Formal definition of probability theory rests on few axioms
• Theorems can be derived from the axioms
• Bayes’ Theorem measures confidence in hypothesis given
data

• Blunders in probability theory: Incorrect use of prior;
neglect of prior information
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Further reading

• Any introductiory textbook on statistics and probability
• This chapter is based on Gauch (2003), Chapter 6. For a
more concise introduction, see Hugh G. Gauch (2012),
Chapter 8.

40 / 42

Review questions

1. Could Bayes’ theorem be useful for inductive procedures?
How/why?

2. A test for skabies1 predicts 98% correctly to healthy
people that they are free of skabies, and 98% correctly to
sick people that they have skabies. We assume that 1 in
1000 inhabitants in our city have skabies. The test is
positive for you.
a) What is the probability that you have skabies given the

positive test?
b) What is the probability if you use a flat prior, i.e. a

probability of skabies = 0.5?

3. Find examples for the blunders ”Ignored prior” and
”Ignored condition” surrounding Bayes’ theorem

1Skabies is a contageous skin disease that is caused by mites; In German:
Krätze

41 / 42

References i

Gauch, H. G. (2003). Scientific Method in Practice. Cambridge
University Press.

Hugh G. Gauch, J. (2012). Scientific Method in Brief. Cambridge
University Press.

42 / 42


	Definition of Probability Theory
	Formal definition of probability theory
	Bayes' Theorem
	Common errors in probability theory
	References

