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Platt’s view of science

Platt (1964): The inductive-deductive method is important in
science.

Strong inference about a phenomenon:

1. Devise alternative hypotheses
2. Devise crucial experiments with alternative possible
outcomes. Each outcome excludes at least one hypothesis

3. Carry out experiment to get clean results
4. Iterate procedure to refine hypotheses that remain
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Consequences of strong inference

Strong inference leads at every turn to an experimental testing
of parts of the complete theory (Step 3) and further logical
extension (Step 1) of the theory

Platt argues that

• strong inference is responsible for most of the rapid
development in any field of science

• work spent on theory-building and experimental design
that is not linked to the key principless is not
well-invested

• strong inference uses the minimal number of steps to
achieve scientific progress

• Thinking about several hypotheses stimulates search of
evidence for /each/ hypothesis
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Models and hypotheses

• Hypothesis: A statement. A good hypothesis allows
falsification in the Popperian sense.

• Model: Formal description of knowledge about a
phenomenon. May be simplified in contrast to reality, but
allows predictions (e.g., hypotheses) which can be
falsified. May be expressed in mathematical language.

Example for models: Hardy-Weinberg population model,
Fisher-Wright model, SIR model
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Population model: Random union of gametes
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From model to hypothesis

Allele type: A1 A2
Frequency: p q

⇓

Genotype: A1A1 A1A2 A2A2
HW frequency: p2 2pq q2

Main assumptions: Infinite population size, random mating

The model describes allele and genotype frequencies at a
biallelic locus in a very large diploid population with no
selection and mutation.

⇓

Hypothesis 1: After one generation of random mating,
genotypes are in Hardy-Weinberg frequencies
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A second model leads to a second hypothesis

In a second model with the same assumptions, male and
female individuals are differentiated with random mating only
between male and female individuals

⇓

Hypothesis 2: After one generation of random mating, the
genotype frequencies are

Genotype: A1A1 A1A2 A2A2
HW frequency: pmpf pmqf + qmpf qmqf

,

where pf, qf are allele frequencies of A1, A2 in the female
population and pm, qm the A1, A2 frequencies in the male
population.

9 / 44



Falsifying a hypothesis by an experiment

Design experiment to differentiate hypotheses 1 and 2.

Take very big, equal sized sets of male/female individuals from
two inbred lines of a dioecious plant (e.g., pistacia) which are
fixed for different alleles A1/A2 (pm = 1, pf = 0, overall
frequency p = 1

2 for A1). Mate the two lines randomly. The
resulting F1 population will consist on of heterozygous
individuals at the observed locus.

• Hypothesis 1 predicts a frequency of 2pq = 1
2 of

heterozygotes in F1,
• Hypothesis 2 predicts a frequency of 1.
• The experiment falsifies hypothesis 1,
• Hypothesis 2 is consistent with the data.
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Checking hypotheses by looking at samples

• Hypotheses make general prediction
(e.g., all plants have DNA)

• Can be falsified by experiments
• For some (e.g., categorical) hypotheses, a single
counterexample is sufficient

• For other hypotheses, a sample allows to gather evidence
⇒ Estimate probability that a hypothesis is true with
statistical framework
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Application of Bayesian inference

Instead of looking at whole F1 population, collect a sample of
10 individuals. All individuals are heterozygous

⇒ Consistent with hypotheses 1 and 2 Compare posterior

probabilities of hypotheses 1 and 2 given the sample with
Bayes’ theorem in ratio form:

P(H1|D)
P(H2|D)

=
P(D|H1)P(H1)

P(D|H2)P(H2)
.

Consider hypotheses 1 and 2 equally likely before the

experiment, therefore prior probabilities are
P(H1) = P(H2) = 0.5.
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Application of Bayesian inference

Therefore,
P(H1|D)
P(H2|D)

=
P(D|H1)0.5

P(D|H2)0.5
=
P(D|H1)

P(D|H2)
.

Likelihood of P(D|H1) is binomial probability of picking 10
heterozygous individuals P(D|H1) = (12)

10, the likelihood
P(D|H2) is 1.
Ratio of posterior probabilities:

P(H1|D)
P(H2|D)

=
1

210
=

1

1024

Conclusion: Given the data of the experiment, Hypothesis 2 is
1024 times more probable than Hypothesis 1.
A frequentist analysis is also possible!
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Theory Selection

• Theory selection is a more general term for model
selection

• What should a model achieve?

• Which type of model should we use to study a scientific
problem?

• How complex should the model be?
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Which model should be used?

Example: Which model best describes the transition to
flowering in plants?

Complete network of
regulatory genes

⇓
Full model

Simplified network Empirical model

⇓
Black box model
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How many parameters should be included in a model?

Genes Physiology and
Environment

Yield

Are some parameters more important than others?
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William of Ockham: The parsimony principle

“Among theories that fit the data, choose the simpler one”

William of Ockham (c. 1288- c.1348)
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Aspects of theory choice

Data and model are important!

Additional criteria:

• Parsimony: How complex does not model have to be?
• Predictive accuracy: How good are the predictions?
• Explanatory power: How well can the model explain
results?

• Testability: Can the model be tested?
• Is it possible to generate new insights and knowledge?
• Is it coherent with other scientific and philosophical
beliefs?

• Can the results be repeated?
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Aspects of parsimony

• No insight is possible without simplification
• Insight by focussing on important points? (What are they?)
• Improve accuracy (How?)
• Increase efficiency: Save time and money by focussing on
what is important

Prefer a simpler model versus Prefer a simple model!
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Example of parsimony: Copernican revolution

• Geocentric vs. heliocentric model of planet movement

• Copernicus preferred heliocentric model solely due to
parsimony

• Much later: Other reasons were discovered (stellar
parallax, Bessel, 1838)
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History of Parsimony: Medieval time

• Grosseteste (Oxford) and Thomas Aquinas (Paris) made
statements about parsimony.

• William of Ockham: “Experience can serve to justify
plurality”

Differences between Grosseteste and Ockham:

• Ontological definition: Nature is simple
• Epistemiological definition: Keep your theories simple
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History of Parsimony: Modern times

Newton, Leibniz and Einstein proposed both ontological and
epistemiological interpretations of parsimony.

Einstein’s famous quote:
Everything should be made as simple as possible,

but not simpler.
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Why simplicity and parsimony?

• Scientists showed that simple theories tend to make
reliable predictions

• Simpler models use data better
• Complicated models may model noise
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Principles of Parsimony: Key Terms

• Signal and Noise
• Sample and Population
• Prediction and postdiction
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Signal and noise

• Terms come from radio transmission theory:
The fundamental problem of communication is that

of reproducing at one point either eactly or approxi-
mately a message selected at another point. (Claude
Shannon, 1948)

• Communication channels:

modem → phone line → modem
parent cell → daughter cells
computer memory → storage device → computer memory
nature → scientist
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Signal and noise

A binary data sequence of length 10,000 transmitted over a
binary symmetric channel with noise level f = 0.1.

Application in plant breeding
• Genetics→ signal
• Environment→ signal or noise?
• Experimental error→ noise
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Sample and Population

• Sample: a subset of the population

• Induction: Use sample to make statements about the
population

• Data should be random and unbiased

• How large should the sample be?

• Maximize signal, minimize noise and experimental effort
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Prediction versus Postdiction - A paradox?

• Scientific statements are usually made to generalize and
to make predictions about whole populations.

• But: Analysis of models (i.e., parameter estimation) is
based on the postdiction of existing data
→ Models are fitted to their data

• Pre- and postdiction are statistical terms, related to
population and sample, and use different models

• Relationship of signal and noise:

Data1 = Signal+ Noise1
Data2 = Signal+ Noise2

• By definition, noise has no predictive quality
• In quantitative genetics, noise (or error) is often modeled
as being normally distributed with a mean of 0: e = N(0, σ)
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Prediction versus Postdiction - A paradox?

• If postdiction is the goal: Use a full, complex model that
contains the data

• But: A full model is too specific (i.e., it models noise)
• A good and accurate model is more parsimonious than a
full model.
→ Different model choice
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Curve fitting problem
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Curve fitting problem - Which model to choose?

• Choose the simpler model
• Residuals from a simpler model contain information
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Advantages and disadvantages of simpler models

1. Simple models are more vulnerable
2. Simple, and more comprehensive description
3. Complex models: more choice, can be advantageous or
disadvantageous

• Vulnerability: Fewer parameters, less flexibility, Risk of
falsification is good according to Popper.

• Comprehensive description: But it is not necessarily the
case - parsimonious models can be too descriptive.
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Summary: Curve-fitting

• Goodness of fit to data→ Good postdiction
• Parsimony→ Improved prediction
• Model selection becomes more difficult with noisy data
• Is additional knowledge necessary for model selection?
• One needs to estimate the accuracy of the data (by
replication or simulation)

Another issue:

• Number of model parameters versus size of data set (p vs
n problem)

• Trade-off between parameter numbers and statistical
power
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Parsimony at work: Mendel’s Peas
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Parsimony at work: Mendels Peas
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Parsimony at work: Mendels Peas

Trait Ratio

Round : wrinkled shape 2.96 : 1
Yellow : green endosperm 3.01 : 1
Dark : white seed coats 3.15 : 1
Inflated : constricted seed pods 2.95 : 1
Green : yellow unripe pods 2.82 : 1
Axial : terminal flower positions 3.14 : 1
Tall : short plants 2.84 : 1

Average 2.98 : 1

Dominance : Recessivity 3 : 1

Mendel’s conclusion: “ ...an average ratio of 2.98:1 or 3:1”
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Modeling crop growth

Network control Simplified network Empirical model

Grand challenge: Which crops do we need for future plant
production in a rapidly changing world?

→ Prediction of future climate change and its effect on crops
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Summary

• An effective method of scientific research is Platt’s strong
inference which is an deductive-inductive methods using
experiments to test deducted hypotheses

• Statistical methods can be used to compare competing
hypotheses using sample data

• Generally, simpler models are to be preferred, but
trade-off in ability for postdiction and prediction needs to
be clarified

• Parsimony is an important principle in science
• Parsimonious models use data better
• Complete/Non-parsimonious Models: Danger of
overfitting

• But be careful: Theories/models sometimes have to be
complex
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Further Reading

• ?, The Scientific Method at Work, Chapter 8

43 / 44

References i

44 / 44


	Models in science
	Choosing the best theory
	The parsimony principle
	Signal and noise
	An example of parsimony from genetics
	References

