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CHAPTER 6

Algorithms, Analytics and Prediction

The emphasis so far in this book has been on how statis-
tical science can help us to understand the world, whether
it is working out the potential harm of eating bacon sand-
wiches, or the relationship between the height of parents and
offspring. This is essentially scientific research, to work out
what is really going on and what, in the terms introduced
in the last chapter, is just residual error to be treated as un-
avoidable variability that cannot be modelled.

But the basic ideas of statistical science still hold when we
are trying to solve a practical rather than a scientific problem.
The basic desire to find the signal in the noise is just as rele-
vant when we just want a method that will help in a particu-
lar decision faced in our daily lives. The theme behind this
chapter is that such practical problems can be tackled by using
past data to produce an algorithm, a mechanistic formula that
will automatically produce an answer for each new case that
comes along with either no, or minimal, additional human in-
tervention: essentially, this is ‘technology’ rather than science.

There are two broad tasks for such an algorithm:

+ Classification (also known as discrimination or
supervised learning): to say what kind of situation we’re
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CHAPTER 6

facing. For example, the likes and dislikes of an online
customer, or whether that object in a robot’s vision is a
child or a dog.

« Prediction: to tell us what is going to happen. For
example, what the weather will be next week, what a
stock price might do tomorrow, what products that
customer might buy, or whether that child is going to
run out in front of our self-driving car.

Although these tasks differ in whether they are concerned
with the present or the future, they both have the same
underlying nature: to take a set of observations relevant to
a current situation, and map them to a relevant conclusion.
This process has been termed predictive analytics, but we
are verging into the territory of artificial intelligence (AI),
in which algorithms embodied in machines are used either to
carry out tasks that would normally require human involve-
ment, or to provide expert-level advice to humans.

‘Narrow’ Al refers to systems that can carry out closely
prescribed tasks, and there have been some extraordinarily
successful examples based on machine learning, which in-
volves developing algorithms through statistical analysis of
large sets of historical examples. Notable successes include
speech recognition systems built into phones, tablets and
computers; programs such as Google Translate which know
little grammar but have learned to translate text from an im-
mense published archive; and computer vision software that
uses past images to ‘Jearn’ to identify, say, faces in photo-
graphs or other cars in the view of self-driving vehicles. There
has also been spectacular progress in systems playing games,
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such as the DeepMind software learning the rules of com-
puter games and becoming an expert player, beating world-
champions at chess and Go, while IBM’s Watson has beaten
competing humans in general knowledge quizzes. These sys-
tems did not begin by trying to encode human expertise and
knowledge. They started with a vast number of examples, and
learned through trial and error rather like a naive child, even
by playing themselves at games.

But again we should emphasize that these are technolog-
ical systems that use past data to answer immediate prac-
tical questions, rather than scientific systems that seek to
understand how the world works: they are to be judged solely
on how well they carry out the limited task at hand, and, al-
though the form of the learned algorithms may provide some
insights, they are not expected to have imagination or have
super-human skills in everyday life. This would require ‘gen-
eral’ AI, which is both beyond the content of this book and,
at least at present, beyond the capacity of machines.

Ever since formulae for calculating insurance and annuities
were developed by Edmund Halley in the 1690s, statistical
science has been concerned with producing algorithms to
help in human decisions. The modern development of data
science continues that tradition, but what has changed in
recent years is the scale of the data being collected and the
imaginative products being developed: so-called ‘big data’.
Data can be ‘big’ in two different ways. First, in the number
of examples in the database, which may be individual people
but could be stars in the sky, schools, car rides or social media
posts. The number of examples is often given the label #, and in
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my early days n was ‘big’ if it was anything more than 100, but
now there may be data on many millions or billions of cases.

The other way that data can be ‘big’ is by measuring many
characteristics, or features, on each example. This quantity
is often known as p, perhaps denoting parameters. Thinking
again back to my statistical youth, p used to be generally less
than 10 - perhaps we knew a few items of an individual’s med-
ical history. But then we started having access to millions of
that person’s genes, and genomics became a small n, large
p problem, where there was a huge amount of information
about a relatively small number of cases.

And now we have entered the era of large n, large p prob-
lems, in which there are vast numbers of cases, each of which
may be very complex - think of the algorithms that are ana-
lysing all the posts, likes and dislikes of each of the billions
of Facebook subscribers to decide what sort of adverts and
news to feed them.

These are exciting new challenges which have brought
waves of new people into data science. But, to refetr yet again
to the warning at the start of this book, these trough-loads
of data do not speak for themselves. They need to be han-
dled with care and skill if we are to avoid the many potential
pitfalls of using algorithms naively. We shall see some clas-
sic disasters in this chapter, but first we need to consider the
fundamental problem of boiling the data down into some-
thing useful.

Finding Patterns

One strategy for dealing with an excessive number of cases
is to identify groups that are similar, a process known as
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clustering or unsupervised learning, since we have to learn
about these groups and are not told in advance that they
exist. Finding these fairly homogeneous clusters can be an
end in itself, for example by identifying groups of people
with similar likes and dislikes, which then can be character-
ized, given a label, and algorithms built for classifying future
cases. The clusters that have been identified can then be fed
appropriate film recommendations, advertisements, or pol-
itical propaganda, depending on the motivation of the people
building the algorithm.

Before getting on with constructing an algorithm for classi-
fication or prediction, we may also have to reduce the raw data
on each case to a manageable dimension due to excessively
large p, that is too many features being measured on each case.
This process is known as feature engineering, Just think of
the number of measures that could be made on a human face,
which may need to be reduced to a limited number of import-
ant features that can be used by facial recognition software to
match a photograph to a database. Measures that lack value
for prediction or classification may be identified by data vis-
ualization or regression methods and then discarded, or the
numbers of features may be reduced by forming composite
measures that encapsulate most of the information.

Recent developments in extremely complex models, such
as those labelled as deep learning, suggest that this initial
stage of data reduction may not be necessary and the total
raw data can be processed in a single algorithm.
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Classification and Prediction

A bewildering range of alternative methods are now readily
available for building classification and prediction algorithms.
Researchers used to promote methods which came from their
own professional backgrounds: for example statisticians pre-
ferred regression models, while computer scientists preferred
rule-based logic or ‘neural networks’ which were alternative
ways to try and mimic human cognition. Implementation of
any of these methods required specialized skills and software,
but now convenient programs allow a menu-driven choice of
technique, and so encourage a less partisan approach where
performance is more important than modelling philosophy.
As soon as the practical performance of algorithms start-
ed to be measured and compared, people inevitably got com-
petitive, and now there are data science contests hosted by
platforms such as Kaggle.com. A commercial or academic or-
ganization provides a data set for competitors to download:
challenges have included detecting whales from sound re-
cordings, accounting for dark matter in astronomical data, and
predicting hospital admissions. In each case competitors are
. provided with a training set of data on which to build their algo-
rithm, and a test set that will decide their performance. A par-
ticularly popular competition, with thousands of competing
teams, is to produce an algorithm for the following challenge.

Can we predict which passengers survived the sinking
of the Titanic?

148
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On its maiden voyage, the Titanic hit an iceberg and slowly
sank on the night of 14/15 April 1912. Only around 700 of more
than 2,200 passengers and crew on board got on to lifeboats
and survived, and subsequent studies and fictional accounts
have focused on the fact that your chances of getting on to
a lifeboat and surviving crucially depended on what class of
ticket you had.

An algorithm that predicts survival may at first seem an
odd choice of Problem within the standard PPDAC cycle,
since the situation is hardly likely to arise again, and so is
not going to have any future value. But a specific individual
provided me with some motivation. In 1912 Francis William
Somerton left Ilfracombe in north Devon, close to where 1
was born and brought up, to go to the US to make his for-
tune. He left his wife and young daughter behind, and bought
a third-class ticket costing £8 1s. for the brand-new Titanic.
He never made it to New York - his memorial is in Ilfracombe
churchyard (Figure 6.1). An accurate predictive algorithm
will be able to tell us whether Francis Somerton was unlucky
not to survive, or whether his chances were in fact slim.

The Plan is to amass available data and try a range of dif-
ferent techniques for producing algorithms that predict who
survived - this could be considered more of a classification
than a prediction problem, since the events have already hap-
pened. The Data comprise publicly available information on
1,309 passengers on the Titanic: potential predictor variables
include their full name, title, gender, age, class of travel (first,
second, third), how much they paid for their ticket, wheth-
er they were part of a family, where they boarded the boat
(Southampton, Cherbourg, Queenstown), and limited data
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Figure 6.1

The memorial to a Francis William Somerton in the churchyard in
lIfracombe. It reads, ‘Also of Francis William, son of the above, who
perished in the Titanic disaster April 14 1912, aged 30 years’,
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on some cabin numbers.! The response variable is an indica-
tor for whether they survived (1) or not (0).

For the Analysis, it is crucial to split the data into a train-
ing set used to build the algorithm, and a test set that is kept
apart and only used to assess performance - it would be ser-
ious cheating to look at the test set before we are ready with
our algorithm. Like the Kaggle competition, we will take a
random sample of 897 cases as our training set, and the re-
maining 412 individuals will comprise the test set.

This is a real, and hence fairly messy, data set, and some
pre-processing is required. Eighteen passengers have missing
fare information, and they have been assumed to have paid
the median fare for their class of travelling. The number of
siblings and parents have been added to create a single vari-
able that summarizes family size. Titles needed simplifying:
‘Mlle’ and ‘Ms’ have been recoded as ‘Miss’, ‘Mme’ as ‘Mrs’,
and a range of other titles are all coded as ‘Rare titles’.*

It should be clear that, apart from the coding skills re-
quired, considerable judgement and background knowledge
may be needed in simply getting the data ready for analysis, for
example using any available cabin information to determine
position on the ship. No doubt I could have done this better.

Figure 6.2 shows the proportion of different categories of
passenger that survived, for the 897 passengers in the training
set. All of these features have predictive ability on their own,
with higher survival rates among passengers who are travelling
in a better class of the ship, are female, children, paid more
for their ticket, had a moderate size family, and had the title

# These include Dona, Lady, Countess, Capt, Col, Don, Dr, Major, Rev,, Sir, Jonkheer.
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Class

Third

Second

First

0 20 40 60 80 100
Age
Unknown
71-80
61-70
51-60
41-50
31-40
21-30
11-20
0-10
I I T U I
0 20 40 60 80 100
Family size

kN W kWU

>3 'EEEEEEE
I T 1 1
o] - 20 40 60

Percentage survival

80 100

Figure 6.2
Summary survival statistics for training set of 897 Titanic passengers,
showing the percentage of different categories that survived.
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Mrs, Miss, or Master. All of this matches what we might al-
ready suspect.

But these features are not independent. Better-class pas-
sengers presumably paid more for their tickets, and may be
expected to be travelling with fewer children than would
poorer emigrants. Many men were travelling on their own.
And the specific coding may be important: should age be con-
sidered as a categorical variable, banded into the categories
shown in Figure 6-2, or a continuous variable? Competitors
have spent a lot of time looking at these features in detail and
coding them up to extract the maximum information, but we
shall instead proceed straight to making predictions.

Suppose we made the (demonstrably incorrect) predic-
tion that ‘Nobody survived’. Then, since 61% of the passengers
died, we would get 61% right in the training set. If we used the
slightly more complex prediction rule, ‘All women survive and
no men survive’, we would correctly classify 78% of the train-
ing set. These naive rules serve as good baselines from which
to measure any improvements obtained from more sophisti-
cated algorithms.

Classification Trees

A classification tree is perhaps the simplest form of algo-
rithm, since it consists of a series of yes/no questions, the
answer to each deciding the next question to be asked, until
a conclusion is reached. Figure 6.3 displays a classification
tree for the Titanic data, in which passengers are allocated
to the majority outcome at the end of the branch. It is easy
to see the factors that have been chosen, and the final con-
clusion. For example, Francis Somerton was titled ‘Mr’ in the
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No

Yes No
Title = Mr?
Yes
3rd Class?
Yes [ At jeast 5 | No
in family

16%

3%

Yes | Rare No
title?

37%

A classification tree for the Titanic data in which a sequence of
questions leads a passenger to the end of a branch, at which point
they are predicted to survive if the proportion of similar people in
the training set who survived is greater than 50%; these surviving
proportions are shown at the bottom of the tree. The only people
predicted to survive are third-class women and children from
smaller families, and all women and children in first and second
class, provided they do not have rare titles.
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database, and so would take the first left-hand branch. The
end of this branch contains 58% of the training set, of which
16% survive. We could therefore assess, based on limited in-
formation, that Somerton had a 16% chance of surviving. Our
simple algorithm identifies two groups with more than 50%
survivors: women and children in first and second classes (as
long they do not have a rare title), 93% of whom survive. And
women and children from third class, provided they come
from large families, in which case 60% survive.

Before seeing how such a tree is actually constructed,
we need to decide what performance measures to use in our
competition.

Assessing the Performance of an Algorithm

If algorithms are going to compete to be the most accurate,
someone has to decide what ‘accurate’ means. In Kaggle’s Ti-
tanic challenge this is simply the percentage of passengers in
the test set that are correctly classified, and so after competi-
tors build their algorithm, they upload their predictions for the
response variable in the test set and Kaggle measures their ac-
curacy.” We will present results for the whole test set at once
(emphasizing that this is not the same as the Kaggle test set).
The classification tree shown in Figure 6.3 has an accur-
acy of 82% when applied to the training data on which it was

In order not to have to wait until the end of the competition (in 2020 for the Titanic
data) before anyone gets any feedback, Kaggle splits the test set into public and
private sets. Competitors’ accuracy scores on the public set are published on a leader
board, and this provides a provisional ranking for all to see. But the performance on
the private set is what is actually used to evaluate the final ranking of the competitors
when the competition closes.
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developed. When the algorithm is applied to the test set the ac-
curacy drops slightly to 81%. The numbers of the different types
of errors made by the algorithm are shown in Table 6.1 - this is
termed the error matrix, or sometimes the confusion matrix.
If we are trying to detect survivors, the percentage of true sur-
vivors that are correctly predicted is known as the sensitivity
of the algorithm, while the percentage of true non-survivors
that are correctly predicted is known as the specificity. These
terms arise from medical diagnostic testing.

Although the overall accuracy is simple to express, it is a
very crude measure of performance and takes no account of
the confidence with which a prediction is made. If we look at
the tips of the branches of the classification tree, we can see
that the discrimination of the training data is not perfect, and
at all branches there are some who survive and some not. The
crude allocation rule simply chooses the outcome in the ma-
jority, but instead we could assign to new cases a probability
of surviving corresponding to the proportion in the training
set. For example, someone with the title ‘Mr’ could be given a
probability of 16% of surviving, rather than a simple categor-
ical prediction that they will not survive.

Algorithms that give a probability (or any number) rather
than a simple classification are often compared using Receiver
Operating Characteristic (ROC) curves, which were origin-
ally developed in the Second World War to analyse radar signals.
The crucial insight is that we can vary the threshold at which
people are predicted to survive. Table 6.1 shows the effect of
using a threshold of 50% to predict someone a ‘survivor’, giving
a specificity and sensitivity in the training set of 0.84 and 0.78
respectively. But we could have demanded a higher probability
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TRAINING SET TEST SET
Predicted ' Predicted
not to Predicted not to Predicted
survive to survive survive to survive
Dinet 475 93 568 228 45 273
survive
Survived 71 258 329 35 104 139
546 351 897 263 149 412
Accuracy Accuracy
=(475+ 258)/897 =82% =(228+104)/412=81%
Sensitivity Sensitivity
=258/329=78% =104/139=75%
Specificity Specificity
=475/568 =84% =228/273=84%
Table 6.1

Error matrix of classification tree on training and test data,
showing accuracy (% correctly classified), sensitivity (% of survivors
correctly classified) and specificity (% of non-survivors correctly

classified).
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in order to predict someone survives, say 70%, in which case
the specificity and sensitivity would have been 0.98 and 0.50
respectively ~ with this more stringent threshold, we only
identify half the true survivors but make very few false claims
of surviving. By considering all possible thresholds for pre-
dicting a survivor, the possible values for the specificity and
sensitivity form a curve. Note that the specificity axis conven-
tionally decreases from 1 to o when drawing an ROC curve.

Figure 6.4 shows the ROC curves for training and test
sets. A completely useless algorithm that assigns numbers
at random would have a diagonal ROC curve, whereas the
best algorithms will have ROC curves that move towards the
top-left corner. A standard way of comparing ROC curves is
by measuring the area underneath them, right down to the
horizontal - this will be 0.5 for a useless algorithm, and 1
for a perfect one that gets everyone right. For our Titanic
test set data, the area under the ROC curve is 0.82. It turns
out that there is an elegant interpretation of this area: if we
pick a true survivor and a true non-survivor at random, there
is an 82% chance that the algorithm gives the true survivor
a higher probability of surviving than the true non-survivor.
Areas above 0.8 represent fairly good discriminatory ability.

The area under the ROC curve is one way of measuring
how well an algorithm splits the survivors from the non-
survivors, but it does not measure how good the probabilities
are. And the people who are most familiar with probabilistic
predictions are weather forecasters.

Suppose we want to predict whether or not it will rain to-
morrow at a particular time and place. Basic algorithms
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ROC curves for the classification tree of Figure 6.3 applied to
training (dashed line) and test (solid line) sets. ‘Sensitivity’ is the
proportion of survivors correctly identified. ‘Specificity’ is the
proportion of non-survivors correctly lubelled as not surviving.
Areas under curves are 0.84 and 0.82 for training and test sets

respectively.
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‘How do we know how good ‘probability of
precipitation’ forecasts are?

might simply produce a yes/no answer, which might end up
being right or wrong. More sophisticated models might pro-
duce a probability of it raining, which allows more fine-tuned
judgements - the action you take if the algorithm says a 50%
chance of rain might be rather different than if it says §%.

In practice weather forecasts are based on extremely
complex computer models which encapsulate detailed math-
ematical formulae representing how weather develops from
current conditions, and each run of the model produces a de-
terministic yes/no prediction of rain at a particular place and
time. So to produce a probabilistic forecast, the model has
to be run many times starting at slightly adjusted initial con-
ditions, which produces a list of different ‘possible futures’,
in some of which it rains and in some it doesn’t. Forecasters
run an ‘ensemble’ of, say, fifty models, and if it rains in five
of those possible futures in a particular place and time, they
claim a ‘probability of precipitation’ of 10%.

But how do we check how good these probabilities are?
We cannot create a simple error matrix as in the classifica-
tion tree, since the algorithm is never declaring categorically
whether it will rain or not. We can create ROC curves, but
these only examine whether days when it rains get higher pre-
dictions than when it doesn’t. The critical insight is that we
also need calibration, in the sense that if we take all the days
in which the forecaster says 70% chance of rain, then it really
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Figure 6.5

Calibration plot for the simple classification tree that provides
probabilities of surviving the Titanic sinking, in which the observed
.proportion of survivors on the y-axis is plotted against the predicted
proportion on the x-axis. We want the points to lie on the diagonal,
showing the probabilities are reliable and mean what they say.
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should rain on around 70% of those days. This is taken very
seriously by weather forecasters - probabilities should mean
what they say, and not be either over- or under-confident.

Calibration plots allow us to see how reliable the stated
probabilities are, by collecting together, say, the events given
a particular probability of occurrence, and calculating the
proportion of such events that actually occurred.

Figure 6.5 shows the calibration plot for the simple clas-
sification tree applied to the test set. We want the points to
lie near the diagonal since that is where the predicted prob-
abilities match the observed percentages. The vertical bars
indicate a region in which we would, given reliable predicted
probabilities, expect the actual proportion to lie in 95% of
cases. If these include the diagonal line, as in Figure 6.5, we
can consider our algorithm to be well calibrated.

A Combined Measure of
‘Accuracy’ for Probabilities

While the ROC curve assesses how well the algorithm splits the
groups, and the calibration plot checks whether the probabili-
ties mean what they say, it would be best to find a simple com-
posite measure that combines both aspects into a single number
we could use to compare algorithms, Fortunately weather fore-
casters back in the 1950s worked out exactly how to do this.
If we were predicting a numerical quantity, such as the
temperature at noon tomorrow in a particular place, the ac-
curacy would usually be summarized by the error - the dif-
ference between the observed and predicted temperature.
The usual summary of the error over a number of days is
the mean-squared-error (MSE) - this is the average of the
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squares of the errors, and is analogous to the least-squares
criterion we saw used in regression analysis.

The trick for probabilities is to use the same mean-squared-
error criterion as when predicting a quantity, but treating a
future observation of ‘rain’ as taking on the value 1, and ‘no
rain’ as being o. Table 6.2 shows how this would work for a fic-
titious forecasting system. On Monday a probability of 0.1 is
given to rain, but it turns out to be dry ( true response is 0), and
so the error is 0 - 0.1 =~ 0.1. This is squared to give 0.01, and
so on across the week. Then the average of these squared errors,
B=0.11, is a measure of the forecaster’s (lack of) accuracy.” The
average mean-squared-error is known as the Brier score, after
meteorologist Glenn Brier, who described the method in 1950.

Unfortunately the Brier score is not easy to interpret on its
own, and so it is difficult to get a feeling of whether any fore-
caster is doing well or badly; it is therefore best to compare it
with a reference score derived from historical climate records.
These ‘climate-based’ forecasts take no notice whatever of
current conditions and simply state the probability of precipi-
tation as the proportion of times in climate history in which it
rained on this day. Anyone can make this forecast without any
skill whatsoever ~ in Table 6.2 we assume this means quoting
a 20% probability of rain for every day that week. This gives a
Brier score for climate (which we call BC) of 0.28.

It might be tempting to use the ‘absolute error’, meaning you would lose 0.1 when
giving a 10% probability to an event that does not happen, as opposed to the squared
error of 0.01. This apparently innocuous choice would be a big, big mistake. Some
fairly basic theory shows that this ‘absolute’ penalty would lead people to rationally
exaggerate their confidence in order to minimize their expected errot, and state ‘0%’
chance of rain, even if they genuinely thought the probability was 10%.
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‘Probability of 0.1 0.2 0.5 0.6 0.3
precipitation’
Did it actually No No Yes Yes No
rain?
True response 0 0 1 1 0
Error 0.1  -0.2 05 04 -0.3
Squared error 001 004 025 016 009 B=0.54/5
=0.11
Probability from 0.2 0.2 0.2 0.2 0.2
climate
Climate error -0.2 -~0.2 0.8 0.8 0.2
Squared climate 004 004 064 064 004 BC=14/5

error

=0.28

Table 6.2

Fictional ‘probability of precipitation’ forecasts of whether it will
rain or not at midday next day at a specific location, with the
observed outcome: 1 = did rain, O = did not rain. The ‘error’ is the
difference between the predicted and observed outcome, and

the mean-squared-error is the Brier score (B). The climate Brier
score (BC) is based on using simple long-term average proportions
of rain at this time of year as probabilistic forecasts, in this case

ossumed to be 20% for all days.
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Any decent forecasting algorithm should perform better
than predictions based on climate alone, and our forecast
system has improved the score by BC - B = 0.28 - 0.11 = 0.17.
Forecasters then create a ‘skill score’, which is the propor-
tional reduction of the reference score: in our case, 0.61,”
meaning our algorithm has made a 61% improvement on a
naive forecaster who uses only climate data.

Clearly our target is 100% skill, but we would only get this
if our observed Brier score is reduced to o, which only hap-
pens if we exactly predict whether it will rain or not. This is
expecting rather a lot of any forecaster, and in fact skill scores
for rain forecasting are now around 0.4 for the following day,
and o.2 for forecasting a week in the future.> Of course the
laziest prediction is simply to say that whatever happened
today will also happen tomorrow, which provides a perfect fit
to historical data (today), but may not do particularly well in
predicting the future.

When it comes to the Titanic challenge, consider the naive
algorithm of just giving everyone a 39% probability of surviv-
ing, which is the overall proportion of survivors in the train-
ing set. This does not use any individual data, and is essentially
the equivalent to predicting weather using climate records
rather than information on the current circumstances. The
Brier score for this ‘skill-less’ rule is 0.232.

In contrast, the Brier score for the simple classification
tree is 0.139, which is a 40% reduction from the naive predic-
tion, and so demonstrates considerable skill. Another way of

The skill score is (BC-B)/BC =1- B/BC =1-0.11/0.28 = 0.61
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interpreting this Brier score of 0.139 is that it is exactly what
would be obtained had you given all survivors a 63% chance of
surviving, and all non-survivors a 63% chance of not surviving.

We shall see if we can improve on this score with some
more complicated models, but first we need to issue a warn-
ing that they should not get too complicated.

Over-fitting

We do not need to stop at the simple classification tree shown
in Figure 6.3. We could go on making the tree more and more
complex by adding new branches, and this will allow us to cor-
rectly classify more of the training set as we identify more and
more of its idiosyncrasies.

Figure 6.6 shows such a tree, grown to include many de-
tailed factors. This has an accuracy on the training set of 83%,
better than the smaller tree. But when we apply this algorithm
to the test data its accuracy drops to 81%, the same as the small
tree, and its Brier score is 0.150, clearly worse than the simple
tree’s 0.139. We have adapted the tree to the training data to
such a degree that its predictive ability has started to decline.

This is known as over-fitting, and is one of the most vital
topics in algorithm construction. By making an algorithm too
complex, we essentially start fitting the noise rather than the
signal. Randall Munroe (the cartoonist known for his xkcd
comic strip) produced a fine illustration of over-fitting, by
finding plausible ‘rules’ that US Presidents had followed, only
for each to be broken at subsequent elections.? For example,

+ ‘No Republican has won without winning the House or
Senate’ - until Eisenhower did in 1952.
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Figure 6.6

Over-fitted classification tree for the Titanic data. As in Figure 6.3,
the percentage at the end of each branch is the proportion of
passengers in the training set who survived, and a new passenger
is predicted to survive if this percentage is greater than 50%. The
rather strange set of questions suggests the tree has adapted too
much to individual cases in the training set.
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+ ‘Catholics can’t win’ - until Kennedy in 1960.
« ‘No one has been elected President after a divorce’ — until

Reagan in 1980.
and so on, including some clearly over-refined rules such as

+ ‘No Democratic incumbent without combat experience
has beaten someone whose first name is worth more in
Scrabble’ — until Bill (6 Scrabble points) Clinton beat Bob
(7 Scrabble points) Dole in 1996.

We over-fit when we go too far in adapting to local circum-
stances, in a worthy but misguided effort to be ‘unbiased’ and
take into account all the available information. Usually we
would applaud the aim of being unbiased, but this refinement
means we have less data to work on, and so the reliability goes
down. Over-fitting therefore leads to less bias but at a cost of
mote uncertainty or variation in the estimates, which is why
protection against over-fitting is sometimes known as the bias/
variance trade-off.

We can illustrate this subtle idea by imagining a huge data-
base of people’s lives that is to be used to predict your future
health - say your chance of reaching the age of eighty. We could,
perhaps, look at people of your current age and socio-economic
status, and see what happened to them - there might be 10,000
of these, and if 8,000 reached eighty, we might estimate an 80%
chance of people like you reaching eighty, and be very confi-
dent in that number since it is based on a lot of people.

But this assessment only uses a couple of features to match
you to cases in the database, and ignores more individual
characteristics that might refine our prediction - for example
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no attention is paid to your current health or your habits.
A different strategy would be to find people who matched
you much more closely, with the same weight, height, blood
pressure, cholesterol, exercise, smoking, drinking, and so on
and on: let’s say we kept on matching on more and more
of your personal characteristics until we narrowed it down
to just two people in the database who were an almost per-
fect match. Suppose one had reached eighty and one had not.
Would we then estimate a 50% chance of you reaching 80?
That 50% figure is in a sense less biased, as it matches you so
closely, but, because it is only based on two people, it is not
a reliable estimate (i.e., it has large variance).

Intuitively we feel that there is a happy medium between
these two extremes; finding that balance is tricky, but crucial.
Techniques for avoiding over-fitting include regularization,
in which complex models are encouraged but the effects of
the variables are pulled in towards zero. But perhaps the
most common protection is to use the simple but powerful
idea of cross-validation when constructing the algorithm.

It is essential to test any predictions on an independent
test set that was not used in the training of the algorithm,
but that only happens at the end of the development pro-
cess. So although it might show up our over-fitting at that
time, it does not build us a better algorithm. We can, how-
ever, mimic having an independent test set by removing say
10% of the training data, developing the algorithm on the re-
maining 90%, and testing on the removed 10%. This is cross-
validation, and can be carried out systematically by removing
10% in turn and repeating the procedure ten times, a proced-
ure known as tenfold cross-validation.
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All the algorithms in this chapter have some tunable
parameters which are mainly intended to control the com-
plexity of the final algorithm. For example, the standard pro-
cedure for building classification trees is to first construct a
very deep tree with many branches that is deliberately over-
fitted, and then prune the tree back to something simpler
and more robust: this pruning is controlled by a complexity
parameter.

This complexity parameter can be chosen by the cross-
validation process. For each of the ten cross-validation
samples, a tree is developed for each of a range of differ-
ent complexity parameters. For each value of the parameter,
the average predictive performance over all the ten cross-
validation test sets is calculated ~ this average performance
will tend to improve up to a certain point, and then get worse
as the trees become too complex. The optimal value for the
complexity parameter is the one that gives the best cross-
validatory performance, and this value is then used to con-
struct a tree from the complete training set, which is the final
version.

Tenfold cross-validation was used to select the complex-
ity parameter in the tree in Figure 6.3, and to choose tuning
parameters in all the models we consider below.

Regression Models

We saw in Chapter 5 that the idea of a regression model is
to construct a simple formula to predict an outcome. The re-
sponse variable in the Titanic data is a yes/no outcome indicat-
ing survival or not, and so a logistic regression is approptiate,
just as for the child heart surgery data in Figure §.2.
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Table 6.3 shows the results from fitting a logistic regression.
This has been trained using ‘boosting’, an iterative procedure
designed to pay more attention to more difficult cases: indi-
viduals in the training set that are incorrectly classified at one
iteration are given greater weight in the next iteration, with
the number of iterations chosen using tenfold cross-validation.

The coefficients for the features of a particular passenger
can be added up to give a total survival score. For example
Francis Somerton would start with 3.20, subtract 2.30 for
being in third class and 3.86 for being titled ‘Mr’, but then have
1.43 added back on for being a male in third class. He loses 0.38
for being in a family of one, giving a total score of - 1.91, which
translates to a probability of 13% of surviving, slightly less than
the 16% given by the simple classification tree.*

This is a ‘linear’ system, but note that interactions have
been included which are essentially more complex, com-
bined features, for example the positive score for the inter-
action of being in third class and a male helps counteract the
extreme negative scores for the third class and ‘Mr’ already
taken into account. Although we are focusing on predictive
performance, these coefficients do provide some interpret-
ation of the importance of different features.

Many more sophisticated regression approaches are avail-
able for dealing with large and complex problems, such as
non-linear models and a process known as the LASSO, that
simultaneously estimates coefficients and selects relevant

To transform a total score S to a survival probability p, use the formula p =1/(1+¢%),
where ¢ is the exponential constant. This is the inverse of the logistic regression equation

logep /(1 ~p)=S.
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Characteristic Score
Starting scoré | 3.20
Third c|us_s B -2.30
" EEEEEET)
Male in third c!c-xss +1.43
Rare Title N —_2_.7_3
Aged 51-60 in second class ” - ~3.62
Each member of family -0.38
Table 6.3

Coefficients applied to features in logistic regression for Titanic
survivor data: negative coefficients decrease the chance of
surviving, positive coefficients increase the chance.

173




CHAPTER 6

predictor variables, essentially by estimating their coeffi-
cients to be zero.

More Complex Techniques

Classification trees and regression models arise from some-
what different modelling philosophies: trees attempt to con-
struct simple rules that identify groups of cases with similar
expected outcomes, while regression models focus on the
weight to be given to specific features, regardless of what
else is observed on a case.

The machine learning community makes use of classifica-
tion trees and regressions, but has developed a wide range of
alternative, more complex methods for developing algorithms.
For example:

« Random forests comprise a large number of trees, each
producing a classification, with the final classification
decided by a majority vote, a process known as bagging.

«  Support vector machines try to find linear combinations of
features that best split the different outcomes.

s Neural networks comprise layers of nodes, each node
depending on the previous layer by weights, rather like
a series of logistic regressions piled on top of each other.
Weights are learned by an optimization procedure, and,
rather like random forests, multiple neural networks
can be constructed and averaged. Neural networks
with many layers have become known as deep-learning
models: Google’s Inception image-recognition system
is said to have over twenty layers and over 300,000
parameters to estimate.
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* K-nearest-neighbour classifies according to the majority
outcome among close cases in the training set.

The results of applying some of these methods to the Titanic
data, with tuning parameters chosen using tenfold cross-
validation and ROC as an optimization criterion, are shown
in Table 6.4.

The high accuracy of the naive rule, ‘All females survive,
all males do not’, which either beats or is close behind more
complex algorithms, demonstrates the inadequacy of crude
‘accuracy’ as a measure of performance. The random forest
produces the best discrimination reflected in the area under
the ROC curve, although perhaps surprisingly the probabili-
ties coming from the simple classification tree have the best
Brier score. There is therefore no clear winning algorithm.
Later, in Chapter 10, we shall check whether we can confi-
dently claim there is a proper winner on any of these criteria,
since the winning margins might be so small that it can be ex-
plained by chance variation - say in who happened to end up
in the test and training set.

This reflects a general concern that algorithms that win
Kaggle competitions tend to be very complex in order to
achieve that tiny final margin needed to win. A major problem
is that these algorithms tend to be inscrutable black boxes ~
they come up with a prediction, but it is almost impossible
to work out what is going on inside. This has three negative
aspects. First, extreme complexity makes implementation
and upgrading a great effort: when Netflix offered a $1m prize
for prediction recommendation systems, the winner was so
complicated that Netflix ended up not using it. The second
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Accuracy Area under ROC Brier score
Method (high is good) curve (highis good)  (low is good)
Everyone has a 39% 0.639 0.500 0.232
chance of surviving
All females survive, all 0.786 0.578 0.214
males do not .
Simple classification 0.806 0.819 0.139
tree
Classification tree 0.806 0.810 0.150
(over-fitted)
Logistic regression 0.789 0.824 0.146
Random forest 0.799 0.850 0.148
Support Vector Machine 0.782 0.825 0.153
(SVM)
Neural network 0.794 0.828 0.146
Averaged neural 0.794 0.837 0.142
network
K-nearest-neighbour 0.774 0.812 0.180
Table 6.4

The performance of different algorithms on Titanic test data: bold
indicates the best results. Complex algorithms have been optimized
to maximize the area under the ROC curve.
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negative feature is that we do not know how the conclusion
was arrived at, or what confidence we should have in it: we
just have to take it or leave it. Simpler algorithms can better
explain themselves. Finally, if we do not know how an algo-
rithm is producing its answet, we cannot investigate it for
implicit but systematic biases against some members of the
community - a point I expand on below.

All this points to the possibility that quantitative per-
formance may not be the sole criterion for an algorithm, and
once performance is ‘good enough’, it may be reasonable
to trade off further small increases for the need to retain
simplicity.

Who was the luckiest person on the Titanic?

The survivor with the highest Brier score when averaged over
all the algorithms might be considered the most surprising
survivor. This was Karl Dahl, a 45-year-old Norwegian/Aus-
tralian joiner travelling on his own in third class, who had
paid the same fare as Francis Somerton; two algorithms even
gave him a 0% chance of surviving. He apparently dived into
the freezing water and clambered into Lifeboat 15, in spite of
some on the lifeboat trying to push him back. Maybe he just
used his strength.

This is in stark contrast to Francis Somerton from Ilfra-
combe, whose death, we have found, fitted into the general
pattern. Rather than having a successful husband in America,
his wife Hannah Somerton was left just £5, less than Francis
spent on his ticket.
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Challenges of Algorithms

Algorithms can display remarkable performance, but as their

role in society increases so their potential problems become
highlighted. Four main concerns can be identified.

+ Lack of robustness: Algorithms are derived from
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associations, and since they do not understand
underlying processes, they can be overly sensitive to
changes. Even if we are only concerned with accuracy
rather than scientific truth, we still need to remember
the basic principles of the PPDAC cycle, and the stages
of going from the data obtained from a sample through
to statements being made about a target population.

For predictive analytics, this target population comprises
future cases, and if everything stays the same, then
algorithms constructed on past data should perform
well. But the world does not always stay the same. We’ve
noted the failure of algorithms in the changing financial
world of 2007-8, and another notable example was

the attempt by Google to predict flu trends based on

the pattern of search terms being submitted by users.
This initially performed well but then in 2013 started to
dramatically over-predict flu rates: one explanation is
that changes introduced by Google into the search engine
may have led to more search terms that pointed to flu.
Not accounting for statistical variability: Automated
rankings based on limited data will be unreliable.
Teachers in the US have been ranked and penalized for
the performance of their students in a single year,
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although class sizes of less than thirty do not provide a
reliable basis for assessing the value added by a teacher.
This will reveal itself in teachers having implausibly
dramatic changes in annual assessment: in Virginia, a
quarter of teachers showed more than 40-point
differences in a 1-100 scale from year-to-year.”

« Implicit bias: To repeat, algorithms are based on
associations, which may mean they end up using
features that we would normally think are irrelevant to
the task in hand. When a vision algorithm was trained
to discriminate pictures of huskies from German
Shepherds, it was very effective until it failed on huskies
that were kept as pets - it turned out that its apparent
skill was based on identifying snow in the background.*
Less trivial examples include an algorithm for
identifying beauty that did not like dark skin, and another
that identified Black people as gorillas. Algorithms that
can have a major impact on people’s lives, such as those
deciding credit ratings or insurance, may be banned from
using race as a predictor but might use postcodes to
reveal neighbourhood, which is a strong proxy for race.

« Lack of transparency: Some algorithms may be opaque
due to their sheer complexity. But even simple
regression-based algorithms become totally inscrutable
if their structure is private, perhaps through being a
proprietary commercial product. This is one of the major
complaints about so-called recidivism algorithms, such

* From Cathy O’Neil’s book Weapons of Math Destruction, which provides many
examples of the misuse of algorithms.
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as Northpointe’s Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) or MMR’s
Level of Service Inventory - Revised (LSI-R).’ These
algorithms produce a risk-score or category that can

be used to guide probation decisions and sentencing,

and yet the way in which the factors are weighted

is unknown. Furthermore, since information about
upbringing and past criminal associates is collected,
decisions are not solely based on a personal criminal
history but background factors that have been shown

to be associated with future criminality, even if the
underlying common factor is poverty and deprivation. Of
course, if all that mattered was accurate prediction, then
anything goes and any factor, even including race, might
be used. But many argue that fairness and justice demand
that these algorithms should be controlled, transparent
and able to be appealed against.

Even for proprietary algorithms, some degree of explanation is
possible provided we can experiment with different inputs.
When purchasing online insurance, the quoted premium is
calculated according to an unknown formula subject only to
certain legal constraints: for example, in the UK car insurance
quotes cannot take into account the gender of the applicant,
life insurance cannot use race or any genetic information
except Huntingdon’s disease, and so on. But we can still get
an idea of the influence of different factors by systematically
lying and seeing how the quotation changes: this allows a
certain degree of reverse-engineering of the algorithm to see
what is driving the premium.
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There is increasing demand for accountability of algo-
rithms that affect people’s lives, and requirements for com-
prehensible explanation of conclusions are being built into
legislation. These demands militate against complex black
boxes, and may lead to a preference for (rather old-fashioned)
regression-based algorithms that make the influence of each
item of evidence clear.

But having looked at the dark side of algorithms, it is fit-
ting to end with an example that seems entirely beneficial
and empowering.

What is the expected benefit of adjuvant therapy
following breast cancer surgery?

Nearly all women newly diagnosed with breast cancer will
receive some form of surgery, although this might be limit-
ed in extent. A critical issue is then the choice of adjuvant
therapy that follows surgery in order to reduce the chances
of recurrence and subsequent death from breast cancer,
and treatment options may include radiotherapy, hormone
therapy, chemotherapy and other drug options. Within the
PPDAC cycle, this is the Problem.

The Plan adopted by UK researchers was to develop an al-
gorithm to help with this decision, using Data on 5,700 histor-
ical cases of women with breast cancer obtained from the UK
Cancer Registry. The Analysis comprised the construction
of an algorithm that would use detailed information on the
woman and her tumour in order to calculate her chances of
survival for up to ten years following surgery, and how these
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changed with different treatments. But care is required in
analysing the outcomes of women given these treatments in
the past: they were given the treatments for unknown rea-
sons and we cannot use the apparent benefits observed in
the database. Instead a regression model is fitted, with sur-
vival as the outcome, but forcing the effect of treatments to
be those estimated from reviews of large-scale clinical trials.
The subsequent algorithm is publicly available, and its dis-
crimination and calibration has been checked on independ-
ent data sets comprising 27,000 women.®

The resulting computer software is called Predict 2.1,
and the results are Communicated through the proportions
of similar women expected to survive five and ten years for
different adjuvant treatments. Some results for a fictitious
woman are shown in Table 6.5.

Predict 2.1 is not perfect, and the figures in Table 6.5 can
only be used as ballpark guides for an individual: they are
what we would expect to happen to women who match the
features included in the algorithm, and additional factors
should be taken into account for a specific woman. Never-
theless, Predict 2.1 is used routinely for tens of thousands
of cases a month, both in multidisciplinary team meet-
ings (MDTs) in which a patient’s treatment options are
formulated, and in communicating that information to
the woman. For those women who wish to fully engage in
their treatment choices, a process known as ‘shared-care’,
it can provide information normally only available to the
clinicians, and empower them to have greater control over
their lives. The algorithm is not proprietary, the software
is open source and the system is regularly being upgraded
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Additional benefit over

Treatment previous treatments Overall survival %
_S_urg;only - 64%

+ Hormone therapy 7% 70%

+ Chem;t;;a;;y _ 6% 76%

+ Trastuzamab (Herceptin) 3% 79%

For women free from cancer 87%
Table 6.5

Using the Predict 2.1 algorithm, the proportion of 65-year-old
women expected to survive ten years after surgery for breast
cancer, when a 2cm grade 2 tumour was detected at screening,
with two positive nodes, and ER, HER2 and Ki-67 status are all
positive. The cumulative expected benefits for different adjuvant
treatments are shown, aithough these treatments may have
adverse effects. The surviving proportion for ‘women free from
cancer’ represents the best survival achievable, given the age of
the woman.
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(" https:/www.predict.nhs.uk
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Figure 6.7

Survival curves from Predict 2.1 for up to fifteen years post-
surgery, for women with the features listed in the legend to
Table 6.5, showing the cumulative additional survival from
further treatments. The area above the dashed line represents
women with breast cancer who die of other causes.
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to provide further information, including adverse effects of
treatments.

Artificial Intelligence

Ever since its first use in the 1950s, the idea of artificial
intelligence (AT) has received periodic hype and enthusiasm and
subsequent troughs of criticism. I was working on computer-
aided diagnosis and handling uncertainty in Al in the 1980s,
when much of the discourse was framed in terms of a com-
petition between approaches based on probability and statis-
tics, those based on encapsulating expert ‘rules’ of judgement
or those trying to emulate cognitive capacities through neural
networks. The field has now matured, with a more pragmat-
ic and ecumenical approach to its underlying philosophy, al-
though the hype has not gone away.

Al comprises intelligence demonstrated by machines,
which is-a suitably wide-ranging idea. It is a much bigger
topic than the restricted issue of algorithms discussed in this
chapter, and statistical analysis is only one component to
building AT systems. But, as demonstrated by the extraordin-
ary recent achievements of algorithms in vision, speech,
games and so on, statistical learning plays a major part in the
successes in ‘narrow’ Al Systems such as Predict, which pre-
viously would be thought of as statistics-based decision-
support systems, might now reasonably be called AL*

Many of the challenges listed above come down to algo-
rithms only modelling associations, and not having an idea of

# Perhaps for no other reason than to attract funding. . .
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underlying causal processes. Judea Pearl, who has been large-
ly responsible for the increased focus on causal reasoning in
Al, argues that these models only allow us to answer ques-
tions of the type, ‘We have observed X, what do we expect
to observe next?” Whereas general Al needs a causal model
for how the world actually works, which would allow it to
answer human-level questions concerning the effect of in-
terventions (‘What if we do X?’), and counterfactuals (‘What
if we hadn’t done X?’).
We are a long way from AT having this ability.

This book emphasizes the classic statistical problems of
small samples, systematic bias (in the statistical sense) and
lack of generalizability to new situations. The list of chal-
lenges for algorithms shows that although having masses of
data may reduce the concern about sample size, the other
problems tend to get worse, and we are faced with the add-
itional problem of explaining the reasoning of an algorithm.

Having bucketloads of data only increases the challeng-
es in producing robust and responsible conclusions. A basic
humility when building algorithms is crucial.

186




ALGORITHMS, ANALYTICS AND PREDICTION

Summary

+ Algorithms built from data can be used for
classification and prediction in technological
applications.

« ltisimportant to guard against over-fitting an
algorithm to training data, essentially fitting to noise
rather than signal.

« Algorithms can be evaluated by the classification
accuracy, their ability to discriminate between
groups, and their overall predictive accuracy.

» Complex algorithms may lack transparency, and
it may be worth trading off some accuracy for
comprehension,

» The use of algorithms and artificial intelligence
presents many challenges, and insights into both the
power and limitations of machine-learning methods
is vital.
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CHAPTER 6: ALGORITHMS, ANALYTICS AND PREDICTION

1. The Titanic data can be downloaded from http://biostat.mc.vanderbilt.edu/
wiki/pub/Main/DataSets/titanic3.xls.

Verifying probability of precipitation: http://www.cawcr.gov.au/projects/

verification/POP3/POP3.html.

3. ‘Electoral Precedent’, xkcd, https://xkcd.com/1122/.

4. httpi//innovation.uci.edu/2017/08 /husky-or-wolf-using-a-black-box-
learning-model-to-avoid-adoption-errors/.

5. The use of COMPAS and MMR algorithms is critiqued in C. O’Neil,
Weapons of Math Destruction: How Big Data Increases Inequality and
Threatens Democracy (Penguin, 2016).

NHS, Predict: Breast Cancer (2.1): http://www.predict.nhs.uk/predict_v2.1/.

CHAPTER 7: HOW SURE CAN WE BE ABOUT WHAT IS GOING ON?
ESTIMATES AND INTERVALS

UK labour market statistics, January 2018: https://www.ons.gov.uk/
releases /uklabourmarketstatisticsjan2018. Bureau of Labor Statistics,

‘Employment Situation Technical Note 2018, https://www.bls.gov/news.
release/empsit.tn.htm.

CHAPTER 8: PROBABILITY - THE LANGUAGE OF
UNCERTAINTY AND VARIABILITY

Consider Game 1. There are many ways of winning, but only one way of
losing - throwing four non-sixes in a row. It is therefore easier to find the
probability of losing (this is a common trick). The chance of throwing a
non-six is 1 — ¢+ = 4 (complement rule), and the chance of throwing four
. non-sixes inarowis £ x £x £x£=(£)! =22 = 0,48 (multiplication rule).
So the probability of winning is 1 — 0.48 = 0.52 (complement rule again).
Similar reasoning for Game 2 leads to the probability of winning to be
1 - ($)* = 0.49, showing that Game 1 was slightly more favourable. These
rules also show the error in the Chevalier’s reasoning - he was adding the

probabilities of events that were not mutually exclusive. By his reasoning
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