Experiments with several
factors (factorial designs)

s In this chapter we firstly introduce the concept and terminology associated with
extension of the randomized design of Chapter 7 to include multiple factors
(Section 8.1).

« We then discuss the concept of interaction between those factors (Section 8.2).
o We then add a note of caution against confusing levels and factors (Section 8.3).

e We introduce split-plot designs and Latin square designs and explain their
attractions and limitations (Sections 8.4 and 8.5, respectively).

« We finish the chapter by discussing how the design concepts raised in this
chapter link to statistical analysis (Section 8.6).

8.1 Randomized designs with more than one factor

Let’s continue to think about the tomato plant project from Chapter 7. Imagine that (as
well as the effects of plant feed) we are also interested in whether the application of
insecticide has any effects on tomato plant growth. How should you go about exploring
the effects of insecticide? The first option is to simply do what you did with plant feed
and carry out a second experiment, again using a one-factor design with the presence
ar absence of insecticide as our experimental factor. Such an experiment would ad-
dress the following question:

Does the application of insecticide affect the growth of tomato plants?

Whilst there is nothing wrong with this in principle, there is another possibility, which
is to carry out a single experiment that looks at the effects of both plant feed and in-
secticide at the same time. Since we are exploring the effects of more than one factor,
this fits the definition of a factorial experiment given in Chapter 7. How should we set
up such an experiment? First we would allocate each of our tomato plant seedlings
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A fully crossed design means
that all possible combinations
of treatments of the factors
are implemented. Thus if in

a three-factor experiment,
factor A has two levels, factor
B has three levels, and factor
C has five levels, then a fully
crossed design will involve 30
different treatment groups
(2% 3x5).

at random to one of the four plant feed treatments (‘control, ‘low’, ‘mediun’, or ‘high).
This is exactly what we did in Chapter 7. However, we would then take the seedlings
allocated to one of the feed rates, say the control treatment, and randomly allocate
them to one of the two insecticide treatment groups (insecticide applied” or ‘no in-
secticide applied). We would repeat this for the other three plant feed treatments.
Now we are varying two factors, the rate of plant feed application and whether or
not we apply insecticide. This sort of design is called a two-factor design (or two-way
design). The way that we have set it up means that it is also a fully cross-factored (or
fully crossed) design. This means that we have all possible combinations of the two
factors; or to put it another way, we have plants with and plants without insecticide in
all of our plant feed treatment groups. In contrast, if for whatever reason we could only
apply insecticide to plants in two of the plant feed treatment groups, but had plants
without insecticide in all four plant feed treatment groups, then our design would have
been described as an incomplete design. The statistical analysis of fully cross-factored
designs is easy ta do—in this case we would probably choose a two-way analysis of
variance (ANOVA). In contrast, analysing incomplete designs is significantly more dif-
ficult. Avoid incomplete designs whenever possible. If you need to use an incomplete
design for practical reasons (such as a shortage of samples) then get advice from a
statistician first.

9 For factorial experiments, your analysis will be a lot easier if you have a
complete design.

8.2 Interactions

We have arrived at a fully cross-factored, two-factor design, with four levels for the first
factor (plant feed), and two for the second (insecticide). This will give us eight treat-
ment groups in total (4 x 2), and, as long as we have the same number of plants in each
treatment, and more than one plant in each treatment too, our design will be balanced
and replicated. You can easily imagine how you can get three-factor, four-factor, and
even more complicated designs. In general, it is best just to imagine these; for experi-
ments that you actually have to do, avoid making them so complex that you get over-
whelmed either collecting the data or trying to analyse it.

If simplicity is the key to good design, then you might ask, ‘Why do a two-way factorial
design in the previous case; why not perform the two separate one-factor designs?
The main attraction of using a two-way design is that it allows us to answer multiple
questions within the same experiment. In this case the main questions would be:

Do the plant feed treatments affect the growth of tomato plants?
Do the plant feed rates differ in their effects on the growth of tomato plants?

Does the application of insecticide affect the growth of tomato plants?




Does any effect of insecticide on growth depend on the rate at which the plants
are being given plant feed?

The first three questions are about what statisticians refer to as the main effects
of each factor (the overall effect of the plant feed and the overall effect of insecti-
cide). The final question is about the interaction between the factors, what stat-
isticians call the interaction effect, and this can only be answered with a factorial
design.

In mary biological studies, the most interesting questions are specifically about the
interactions betwaen factors rather than their main effects. For example, we might
hypothesize that older people respond more slowly to a given drug therapy than
younger peaple. If we put this into statistical terms, we are suggesting that the effect
of one factor will depend on the level of ancther; there is an interaction between the
two factors. The important thing to stress here is that, if your hypothesis is about the
interaction, you must test for that interaction. And if you need to test the interaction,
you need to use a design that allows you to test the interaction. This sounds obvious
but it is easy to go wrong if you are not careful; we explore these issues in more detail
in Box 8.1 and Statistics Box 8.1.

So our more complex two-factor design has allowed us several questions, including
questions about interactions between factors that would not be possible with the
simpler one-factor design. It has also saved us from some difficult decisions. Thus,
suppose we had already completed our single-factor plant-feed study from Chapter 7
and are now planning a separate experiment to look at insecticide. An abvious guestion
is should we be using plants that we also give plant feed, and if so, at what rate should
they be fed? By carrying out a single two-factor experiment we avoid this decision,
as we are locking at the effect of insecticide under all four plant-food conditions at
once. Indeed, this also means that if we do see an overall effect of insecticide in our
study we can be more confident about how general any effect of insecticide is likely
to be, since we are testing it under four different plant feed conditions (the same can
obviously be said for effects of plant feeding, since they are being examined with and
without insecticide). This issue is discussed more extensively in Box 8.1. And there is
one final advantage: our two-factor study has almost as much power to test for the
effects of plant feed as a one-factor study with the same total number of plants. It
also has almost as much power to test for insecticide effects as a one-factor study
of insecticide with the same total number of plants. Thus, cur two-factor study can
examine both the effect of plant feed and the effect of insecticide using about half
the number of tomato plants as would be required if we were to carry out separate
experiments for each factor.

On hearing this argument, you are probably tempted to add more and more and
more factors to your study. We would caution against this: if you vary too many factors
simultaneously, your experiment will necessarily be very large, requiring a large number
of subjects and a large amount of effort. Also, interpreting interactions between more
than two factors can be challenging.
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Let us imagine that we want
to investigate whether
dependent factor Ais
influenced by independent
factors Band C. If the effect
of Bon Ais affected by the
value of C, or equivalently

if the effect of Con Ais
affected by the value of B
then there is an interaction
between the factors Band C.
Alternatively if the value of
Ais affected by the value of
Bin the same way regardless
of the value of C, then we
can say that there is a main
effect due to factor B.
Similarly, if A is affected in
the same way by the value
of Cregardless of the value
of B, then there is a main
effect due to C. If there is an
interaction, then by definition
there are no main effects. If
there is no interaction then
both, one, or no main effects
might be present.

Q8.1 Let'sillustrate the

problem of interpreting an
interaction involving three
factors. Imagine that in the
tomato plant experiment we
explore the effects of tomato
plant variety (two levels), food
applied (two levels: whether a
plant food was added to the
growing medium at low or high
dose), and insecticide treatment
(two levels: whether an
insecticide was sprayed on the

plants or not) on growth rate. Our

subsequent statistical analysis
informs us that there an
interaction between all three
factors; can you describe
biologically what this means?
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BOX 8.1 Interactions and main effects

In the main text we claimed that one advantage of carrying out experiments with
two or more factors was that this would allow you to look at both the main effects
of the factors and also their inferactions. Understanding what these actually are is
fundamental to understanding these more complex designs. However, these con-
cepts are also some of the most misunderstoad statistical ideas. In this box we will
explore these concepts in a little more detail in the hope of showing that they are
both easy to understand and extremely useful.

Let’s go back to thinking about the effects of feeding treatments on growth rate
in different varieties of tomato plants. Imagine that we want to investigate two
feeding regimes, high and low food, and we want to compare two varieties of to-
mato, which we will calt varieties A and B. This will give us four different treatments
(both varieties with both feeding regimes). Figure 8.1 shows several of the possible
outcomes of an experiment like this.

Let's begin with the situation in Figure 8.1a. Here we can see that for both variet-
ies of tomato, the high-feed treatment leads to faster growth than the low-feed
treatment. However, if we compare the two varieties of tomato when they are fed
identically, we see no difference. Statistically, we would say that there is a signifi-
cant main effect due to feed treatment, but no main effect due to tomato variety.
Biologically, we would say that growth rate is affected by how much you feed the
tomatoes, but not by particular tomato variety.

The situation in Figure 8.1b is a little more complicated. Here again, we see that
for both varieties the high-feed treatment leads to faster growth than the low-feed
treatment. Although now, if we compare the two varieties under the same feed
treatment, we find that variety A grows slower than B. Statistically, we would now
say that we have significant main effects due to both feed treatment and tomato
variety; biologically, we would say that tomato growth rate is affected by how much
you feed them and also by the tomato variety.

Figure B.1c looks very similar, but differs in one very important respect. Again,
we can see that for both varieties, high feeding increases growth rate. Similarly,
if we look at the growth rate of the two varieties when they are given lots of food
we see that, as in the previous case, variety A grows slower than B. However, if we
compare the varieties at the low-feed level, we see no difference between them.
What does this mean? This is what statisticians refer to as an interaction. Biologi-
cally, it means that the effect of the variety of tomato on growth rate is different
under different feeding regimes, or to be a bit more technical, the effect of one
factor (variety) depends on the level of the other factor (feeding level). In our ex-
ample, the difference is quite extreme; there is no difference between the varieties
at one food level, but a clear difference at another.

In Figure 8.1d we see a less extreme case. We do see a difference between the
varieties under both high- and low-food regimes, but under low food the difference
between the varietias is much smaller. Statistically, this is still an interaction—
the effect of one factor still depends on the level of the other—or to put it
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Figure 8.1 The growth rates of tomato plants in a two-factor experiment. One
factoris plant variety (with two levels: A and B); the other factor is feeding regime
(two levels: high and low). In (a) there is a main effect of feeding regime only
(that is, there is no difference in growth rate between the two varieties when
fed at the same level). In (b) both feeding regime and variety have separate main
effects on growth rate. In (c), (d), and (e) there is an interaction between the two
factors, such that the effect of one is different for different levels of the other.

biologically, the effect of variety on growth rates depends on which food treatment
we consider.

We might even see a third type of interaction, as shown in Figure 8.1e. Here the
growth rate of variety A is slower than B when they are given lots of food, but faster

8.2 Interactions 113
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than Bwhen they are given only a little food, so not only does the size of the difference
in growth rates depend on the food treatment, but so does the direction of the effect.

So why should we care about interactions? One reason is that a significant inter-
action can make it very difficult to interpret (or to even talk about) the main effect
of a treatment. Imagine we got the result in Figure 8.1e. What is the main effect of
food level? In one variety it is positive, and the other negative, so it is meaningless
to talk about the main effect of food level it only makes sense to talk about the
effect of food if we state which variety we are referring to. Similarly, in Figure 8.1d if
we want to talk about the difference between the varieties we need to state which
feeding regime we are comparing them under. We can't really talk about an overall
difference between the varieties in any meaningful way. Even in Figure 8.1b it is hard
to say exactly what the main effect of feeding is because the size of the effect is
different for the two varieties. So we can say that increased feeding has an overall
positive effect on growth rate, but that the size of the positive effect depends on
the variety. Only in situations like in Figure 8.1a can we make a confident statement,
such as the overall effect of increased feeding is to increase growth rate by a speci-
fied number of units. Another way ta think about this is that our factorial design has
allowed us to say more about the generality of our treatment effect. If we had only
carried out the experiment on a single variety, then any effect we detected might
be very specific to the particular variety that we chose. By including a second vari-
ety, we can start to ask questions about how general any effects of the treatment
are. If the treatment has the same effect for both varieties (i.e. there is no interac-
tion), then we can be more confident that the effects of the treatment are likely
to be mare general. Of course, If we had included mare varieties then we could be
even more confident. On the other hand, if we detect a strong interaction between
treatment and variety, then it tells us we must be very cautious in extrapolating
our results to other tomato strains. Interpretation of interactions can sometimes be
tricky, and we discuss this further in Statistics box 8.1.

STATISTICS BOX 8.1 An example of an experiment to test for
an interaction

Suppose that you are interested in sexual selection in sticklebacks. You might hy-
pothesize that because males invest heavily in sexual displays and competing for
females, they may be less good than females at coping with parasitic infections.
One possible prediction of this is that any deleterious effects of parasites will be
greater on male sticklebacks than on females. This is a hypothesis about an inter-
action. We are saying that we think that the effect of parasitism will depend on the
sex of the fish. In other words the effect of the first factor (parasitism) will depend
on the level of the second (sex). By now, you will immediately see that one way to
test this hypothesis would be to have a two-factor design, with infection status
(parasites or no parasites) as one factor, and sex (male or female) as the cther.



You might then measure the weight change in fish during the experiment as an
estimate of the cost of parasitism. As an aside, you might be wondering why you
need the fish with no infections—wouldn't it be enough to simply have infected
males and females and compare their change in weight in a one-factor design? The
prablem with this is that we would have no control. If we found that fish changed in
weight, we wouldn't know whether this was due to the parasites or something else
(for example, the feeding regime). So, to measure the effect of parasitism, we need
to compare fish with and without parasites. Now if we performed the experiment
this way, it would be a relatively simple matter to test for the interaction between
sex and infections status, and if the interaction was significant, this would support
our prediction (but remember that a significant interaction could also arise if para-
sites had a bigger effect on females than males, so it is essential to look at plots of
the data to make sure that the trend is the way round that you predicted).

Now this (hopefully) seems straightforward to you, but we claimed earlier that
people often make mistakes, so what do they do wrong? The most common mis-
take is to treat this experiment as if it were two single-factor experiments done
on the males and females separately. The researcher might analyse the difference
between males with and without parasites, and find that males with parasites lose
significantly mare weight. The analysis could then be repeated on the females, and
may perhaps find no significant difference between the weights of the two types
of female. From this the researcher would then conclude that there is a difference
in the effect of parasites on males and females. This seems logical, but it is wrong.
The reason it is wrong is that the researcher has only tested for the main effects
of parasitism, but not the interaction between parasitism and sex. By doing sepa-
rate tests, the researcher has looked at the difference in male fish caused by para-
sites, and at the difference in female fish caused by parasites, but has not directly
compared the difference in male fish to the difference in female fish. You may be
thinking that we are being needlessly fussy, but in Figure 8.2 we show how this can
make a difference. Figure 8.2 shows the results of an experiment like the one that
we have just described. You can see that the weight loss of male fish is greater
when they are parasitized than when they are not, and a statistical comparison of
these means would show a significant difference between them. In contrast, for
the females, the statistical test says there is no significant difference between the
parasitized and unparasitized individuals. However, if we look at the figure, we can
see that mean values for the females are exactly the same as those for the males.
What is going on? Why is the male difference statistically significant, but the fe-
male difference not? Well there are several possible reasons, but one is that maybe
the sample sizes for males and females are different. Suppose we had only half as
many females as males, this would mean our statistical power to detect a differ-
ence between the female fish would be much lower than for the male fish, leading
to us observe a significant difference in male fish but not in female fish. However,
this is hardly good evidence for concluding that there really is a difference in the
effects of parasites on males and females. Looking at the graphs, common sense

8.2 Interactions 11F
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Figure 8.2 The mean and standard error of weight loss in fish, segregated
by sex and parasitism status. We see that for both male and female fish the
mean level of weight loss is greater for parasitized fish than unparasitized ones.
indeed, the mean weight loss for parasitized fish is the same for both sexes.
This is also true for unparasitized fish. What is different between the sexes is
the standard error (a measure of the effect of within-sample variation on our
confidence that our sample mean is a good estimate of the population mean).
For bath parasitized and unparasitized fish, variation in weight loss seems much
more important in females than males. The power of a statistical test is reduced
when the effect of such variation is higher, so a test might find a significant
effect of parasitism status on weight loss in males but not in females. However,
as plotting the means makes clear, this difference between two separate tests
should not automatically be interpreted as suggestive that parasitism status
and sex interact in their effect on weight loss.
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tells us that there is absolutely no good evidence for a difference in the way males
and females respond to parasitism and if the researcher had tested the interaction
directly using an appropriate statistical test, this is the conclusion that they would
have drawn. This is not just a problem caused by unequal sample sizes; it can arise
for any number of reasons causing greater intrinsic variation in some groups than
others. In the end the only way of being confident that you have (or don't have) an
interaction is to test explicitly for that interaction.

Notice in this example that sex is not a randomly allocated factor (nor was va-
riety in our tomato plant example). That is, individuals are either intrinsically male
or feale; we do not randomly allocate subjects their level of the factor ‘sex’. De-
spite this, we can still carry out the experiment and perform the analysis in exactly
the same way as if the factor were randomly allocated. The only difference comes
when we interpret aur results. Because we did not allocate sex randomly, we have
to be on our guard against confounding factors, If we find an interaction or main ef-
fect involving sex, we need to be on our guard that the driving factor might not be
sex itself but something that correlates with sex but which we have not included in
our statistical model. For example, it might be that it is not sex that has a strong ef-
fect but body mass, and males tend to have higher body mass than females.

9 Often hypotheses we are interested in testing involve the interaction be-
tween factors. If you are interested in such a question, then you must ensure
that your experimental design and statistical analysis allow you to directly explore
this interaction.

8.3 Confusing levels and factors

One confusion that can arise with complicated designs is the distinction between differ-
ent factors and different levels of a factor. You need to avoid such confusion in order to
analyse and interpret a study correctly. In the tomato example, it is easy to see that the
different feeding rates are different levels of a single factor. In contrast, what if we had
performed an experiment with five different brands of plant feed? Now it is less clear;
are the plant feeds different factors or different levels of the same factor? If we had
performed this experiment and had a treatment for each plant feed, then we must think
of the five plant feed treatments as five levels of a factor called plant feed type, and we
would have a one-factor design. But suppose we then carried out an experiment with
only two of the plant feeds and set up the following four treatments: no plant feed, plant
feed Aonly, plant feed B only, plant feed A and plant feed B together. Now it is better to
view the plant feeds (A and B) as two separate factors with two levels (presence or ab-
sence), and analyse the experiment as a two-factor design. In Figure 8.3, we show a nurm-
ber of possible designs with their descriptions to help you get used to this terminology.

a Take care to avoid confusing levels and factors.

Q8.2 An eminent

professor hypothesized
that plants from old tin mine
sites will have evolved increased
ability to deal with tin poisoning.
In a laboratory study, plants
collected from mine sites grew
bigger than plants from non-
mine sites when grown in soil
containing high tin levels. From
this, the professor concluded
that his hypothesis was correct.
A bright young research student
questioned this conclusion on
the grounds that there was no
evidence the increased growth
rate had anything to do with tin;
maybe the mine plants had
evolved to grow bigger for some
other reason. The professor
repeated his experiment using
tin-free soil and found no
difference in the size of plants
from the two groups. The
professor now concluded that
his hypothesis was certainly
correct. Do you agree?
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1
Fertilizer
Replicated 1-factor design with 2 levels of the factor
(fertilizer type).
This can answer the guestion:
a) Do the fertilizers differ in their effect?
2.
Fertilizer Pesticide Control
1-factor design with 3 levels of the factor (type of cultivation).
This can answer the questions:
a) Does fertilizer affect plant growth?
b) Does pesticide affect plant growth?
¢) Do fertilizer and pesticide differ in their effect on plant growth?
3.
Pesticide
No
Pesticide

Fertilizer

2-factor design with 3 levels of the 1st factor (fertilizer type) and 2 of
the 2nd factor (pesticide use).

This can answer the questions:

a) Do the fertilizers differ in their effect on plant growth?

b) Does pesticide affect growth rate?

c) Does the effect of pesticides depend on the type of fertilizer?

Figure 8.3 Different experimental designs allow different questions about
the system under study to be explored. In this case, we have three different
experimental designs that allow exploration of the influence or influences on
growth rate of tomato plants. The more complex the design, the more complex the
range of questions it can be used to address.
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8.4 Split-plot designs (sometimes called
split-unit designs)

The term split plot comes from agricultural research, so let's pick an appropriate ex- In a split-plot design, we have
ample. You want to study the effects of two factors (the way the field was ploughed ~ two factors and experimental
before planting and the way pesticide was applied after planting) on cabbage growth, ~ Subjects that are organized

Three levels of each factor are to be studied. We have at our disposal six square fields neosnumberdy e
For one factor (the main-

of similar size. plot factor) we randomly
The full randemization method of conducting this experiment would be to divide up allocate entire groups to

each field into, say, six equal sections then randomly allocate four of the 36 sections different treatment levels
to each of the nine combinations of ploughing and pesticide application (see Figure  Of that factor. We then
8.4 for a picture of what the experiments would look like). The split-plot method would ;il‘i??gi;ﬁf;;gﬂvﬂ‘:siln
be to allocate two fields at random to each ploughing type, and then plough entire each of these groups to
fields the same. We would then take each field and randomly allocate two of the six different levels of the other
parts of that field to each pesticide treatment. Surely, this is a worse design than full factor (the sub-plot factor).
randomization—why would anyone do this?
The answer is convenience, and sometimes this convenience can be bought at little
cost (although the statistical analysis of split-plot designs is more involved). In practice
it is difficult to organize for different parts of a field to be ploughed in different ways;
our split-plot approach avoids this nuisance. In contrast, applying pesticides, which is
done by & person rather than a machine, can easily be implemented in small areas.
The price we pay for adopting a split-plot design is that it is much better able to detect
differences due to pesticide use (the sub-plot factor), and the interaction between
herbicide and ploughing. than it is to detect differences due to ploughing (the main-
plot factor). This may be acceptable if we expect that the effects of ploughing will
be much stronger (and so easier to detect) than those of pesticide application, or if
we know that pleughing will have an effect but what we are really interested in is the
interaction between ploughing and pesticide use.
Split-plot designs are not restricted to agricultural field trials. Imagine exploring the
effects of temperature and growth medium on yeast growth rate. The experimental
units will be Petri dishes inside constant-temperature incubators. It would be natural to
use temperature as the main-plot factor in a split-plot design, assigning a temperature
to each incubator, then randomly assigning different growth mediums to the dishes
inside individual incubators. Be careful here not to forget about replication. If you care
about the effect of temperature at all, then you need replication with more than one
incubator for each temperature. It is a very dangerous argument to claim that two
incubators are absolutely identical, and so any differences in growth between them
can only be due to their different temperature settings. Even if you bought them from
the same supplier at the same time, it could be that the difference in their positions
within the room means that one experiences more of a draught when open than the
other, one of them may have antibacterial residues from a previous experiment that
the other doesn't have, or one could have a faulty electrical supply that leads to greater
fluctuations in temperature. Be very, very careful before claiming that two things in
biology are identical (as they almost never are), and always replicate.



120 8 Experiments with several factors (factorial designs)

Full randomization

777 R N
N7 AN N
A B \\\Q\\\ng\ B A
g\\a\\g B ¢/ B AV ¢
TrrrTrts NN
Z I NN NN
A A c c &%\\% B

[ JP2JR& [a][e]lc]

Ploughing types Pesticide types

Split plot

#,
7//’%
R
D%
b\ (o]

%

\\\

B c N\Q
NN
B B k\%

NN
N\
A A %\Q\\\

N
c c &E\\\

7,
O
2
>
N
[e:]

N
c A &A\%

7,
7
.

7
7
[g)
b

7
.

Y
7

7

P

0

Y

%
-3
O

AN

Figure B.4 We have six fields each divided into six sections. We have two
factors in our experiment: ploughing technigue (with three levels: 1, 2, and 3)
and pesticide application (with three levels: A, B, and C). In the fully randomized
treatment, we allocate four sections each to one of the nine (three times three)
different combinations of the two factors. Allocation of a section to one of the
nine treatment combinations is done entirely at random without consideration of
which field a section is in. In the split-plot approach, entire fields are allocated
a ploughing level. That is, two fields chosen at random are allocated to a given
ploughing regime, and all the sections in a given field experience the same
ploughing as each other. Ploughing is called the main-plot factor. We then take
each field in turn and allocate the split-plot factor to individual sections within
that field. We randomly allocate two sections within the field to each of the
three methods of pesticide application. The split-plot approach may be attractive
when it is practically very inconvenient to plough different parts of one field in
different ways.




In both these cases the split-plot design is attractive because the spatial scales at
which we can easily impose experimental variation differ between the two factors. A split-
plot design can also be attractive if it is simply easier to impose variation in one factor
than anather. Imagine we want to explore the effects of three different levels of water
temperature and four different lengths of previous fasting on the activity of crabs. We have
at our disposal 48 crabs and a single large experimental aquarium. Each crab is randomized
to a combination of water temperature and previous fasting period, and we have four
replicate crabs for every combination. To help preserve independence of subjects we
introduce crabs into the aguarium singly and observe them for thirty minutes each. If we
campletely randomize the order in which we assay crabs then we will frequently have to
change the water termperature. This is inconvenient because it takes 24 hours to achieve
this in our experimental system. To reduce this inconvenience we would split the crabs into
six groups where all the crabs in a group have the same water temperature and there are
two replicates of each fasting period per group. We then randomly order the eight crabs
within each group, randomly order the six groups, and assay the 48 crabs in that order.
Temperature has become the main-plot factor in a split-plot design: we have significantly
reduced the number of times we will have to change the water temperature over the
course of our experimant, and so shortened the duration of the experiment considerably.

9 Split-plot designs should only really interest you in an experiment with mul-
tiple factors where one factor can be allocated easily to groups of subjects,
but is practically awkward to assign to individual subjects.

8.5 Latin square designs

Like the split-plot designs just discussed, the Latin square design is another alternative
to a fully randomized factorial design. The big attraction of the Latin square approach
is in reducing the number of experimental units required. Suppose that we wanted to
evaluate the quality of apples from orchards subject to four different pesticide regimes,
so the factor of interest has four different levels. We require experts to evaluate the
amount of insect damage in a box of apples taken from each orchard and estimate
the percentage of apples that are fit for sale to humans. Since evaluation is time con-
suming, we require four experts. Further, to find sufficient space for our experiment,
we used four different farms (each of which has several orchards). We might reason-
ably expect both the identity of the expert and the farm that the apples came from
to impact on the score that a box gets, as well as any effect of pesticide treatment.
Thus, since we have three factors in our study, each with four lavels, we would ordinarily
recommend that the number of subjects be a multiple of 64 (43). This ensures that the
experiment is balanced and has at least one subject for each combination of levels of
the three different factors. Adoption of a Latin square design allows us to reduce this
number of subjects considerably, such that we only need a multiple of 16 (42). This is
done by allocating pesticide treatments to orchards within farms and boxes of apples
to expert evaluators according to an appropriate Latin square (see Figure 8.5). Such an
approach can considerably reduce the size (and thus cost) of an experiment.
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Q 8.3 We argued earlier

that replication is
important. What would you do in
the yeast-growth experiment
described here if you only had
access to three incubators and
you wanted to explore three
different levels of temperature?
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Some examples of Latin square designs

3x3

11A[B|C

2/|B|C|A

3|C|A|B

1 2 3

4x4
ilA|(B|(C|D| 1|A|B|C|D| 1|lA|B|C|ID| 1|A|B|C|D
2/B|A|D|C 2/B|C|D|A| 2/B|D|A|C| 2|B|/A|D|C
3/C|D|BJA 3/C|D|A|B| 3/{C|(B(D|B| 3|C|D|A|B
4 D|C|A|B 4 D|A|B|C| 4/DIC|B|A| 4/D|C|B|A
1 2 3 4 1 2 3 1 3 4 1 2 3 4

The first blocking factar (A) is represented by the columns and the second
blocking factor (B) by the rows of these tables.

The treatment levels of factor C are represented by capital letters in the
tables. Note the symmetry of these designs: each row is a complete block
and each column is a complete block.

Figure 8.5 To make a Latin square, we first of all produce an N x N square grid,
then place N distinct symbols (letters in our case), in the cells of this grid, such
that each symbol appears once and only once in every row and every column
(analogous to Sudoku puzzles). This grid is then used to allocate experimental
units. For example, if we take the first (leftmost) of the 4 x 4 grids this could
be used for the apple experiment described in the text. We want to investigate
the effect of four pesticide treatments, that we label A, B, C, and D. We use four
farms (represented by the rows 1 to 4 of the grid), and four experts (represented
by the columns 1 to 4). Each expert will receive one box of apples from each of
the different farms. Expert 1 will receive a box from farm 1 of apples grown under
pesticide A, a box frem farm 2 grown under pesticide B, a box from farm 3 grown
under pesticide C, and a box from farm 4 grown under pesticide D. Expert 2 will
receive a box from farm 1 of apples grown under pesticide B, a box from farm 2
grown under pesticide A, a box from farm 3 grown under pesticide D, and a box
from farm 4 grown under pesticide C. In all, only 16 subjects (four orchards on
each farm) will be required, whereas a traditional full-factorial experiment would
have required 64 orchards.
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However, there are restrictions on when Latin square designs can be applied. These
designs are highly constrained in that the number of levels of each of the factors must
be the same. For example, imagine we are interested in comparing the effects of three
different diets on the growth rates of puppies. We are concerned that the breed of a
puppy and the size of the litter it came from might be confounding factors. Now because
diet has three levels (the three separate diets), then to use a Latin square design
we need to impose that the other two factors also have three levels, so we would use
three different breeds of dog and select subjects from three different litter sizes. This is
quite a restriction. Let's say that to get the number of replicates you need, you have to
use seven different breeds of dog. You could get around this problem if you could divide
these seven breeds into three groups. We would only recommend this trick if there is
a truly natural division (e.g. into gun dogs, lap dogs, and racing dogs, in our example).
If you cannot achieve this symmetry, then you must use a fully randomized factorial
design instead. An important assumption of the Latin square design is that there are
no interactions between the three factors. In our example, we are assuming that the
effects of breed, litter size, and diet act completely independently on the growth rates
of puppies. Our knowledge of animal physiology suggests that this may well not be
true. In cases like this, where you think interactions could be important, again we would
recommend a factorial design instead, where interactions can be tested. However, in
cases where you can justify the assumption of nointeractions from your prior knowledge
of the underlying biology, and where you can design a useful experiment so that all the
factors have the same number of levels, the Latin square does present a very efficient
design, in terms of reducing the numbers of replicates needed. In practice, we find that
most scientists rarely find themselves in circumstances that justify use of this design.

9 The Latin square design is an alternative to a fully randomized factorial de-
sign using fewer experimental units. However, it can only be used to ask a
very restricted set of scientific questions.

8.6 Thinking about the statistics

In any study, the experimental design that you choose and the statistics that you use
to analyse your data will be tightly linked. Now that we have outlined some of the most
common experimental designs that you will come across we want to finish this chapter
by demonstrating this link with an example.

Suppose you are in charge of a study to evaluate whether a range of herbal extracts
are of any use as antibacterial agents. To do this you decide to measure the growth of
Escherichia coli bacteria on agar plates containing the different extracts, and also on
control plates. You have nine extracts to test. How do you proceed?

Obeying our advice from Chapter 1, you decide to think about the statistical
tests that you will use to analyse your data before you start collecting any. Your study
has one factor: the different extracts. Thus, your study will be based around a ane-
factor design.
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After discussion with a statistician (or reading a statistical textbook), you decide that
the type of analysis appropriate for this study is a one-factor analysis of variance (or
one-way analysis of variance). Do not worry iIf you have never heard of this test before,
and have no idea how to actually do it. In fact, in these days of user-friendly computer
programs, the actual doing of the test is the easy part—it is making sure your tests
are appropriate for your data that can be tricky. The important thing from our point
of view is that this test, as with all statistical tests, has a number of assumptions that
must be met if it is to be used appropriately. One important requirement is that for
each level of the factor you need at least two measurements (i.e. some replication).
In your case this means that for every extract (and a suitable control), you need to
make at least two experimental measurements of growth rate. A second requirement
is that the data collected must be a measurement (i.e. measured on an interval or
ratio scale, see Statistics Box 8.2 for details), not an arbitrary score. So if you chose to
measure the average colony diameter of 100 randomly chosen colonies per plate, the
analysis would be appropriate; but if instead you simply assessed growth on the plate
on a 5-point scale based on categories (like 1 = no growth, 2 = very little growth, and
so on), you could not use this analysis. There are several other requirements of this
test, and whilst we will not go through them here one by one, that is exactly what you
would do if you were in charge of this study. If you can meet all the requirements, all
well and good, but what if you can't? First you need to consider the consequences of
breaking a particular assumption. In general, failing to meet the requirements of a test
will reduce your confidence in the result {and give ammunition to the Devil's Advocate).
Failing to perfectly meet some assumptions may have little effect on the reliability of
the test, and in this case you might decide to proceed with caution. However, this will
often not be the case and failure to meet some requirements will entirely invalidate the
test (which is not to say that you won't be able to get your computer to carry it out,
just that the results would be untrustworthy). Detailed discussion of these different
situations is well beyond the scope of this book, and if you find yourself in this situation
we would strongly advise reading a good statistics book such as one of those in the
Bibliography, or speaking to a statistician. If after this you decide that you cannot meet
critical assumptions, you are left with two options: either to redesign the study to meet
all the assumptions or to look for another suitable test with different assumptions that
you can meet (bearing in mind that such a test may not exist, or may be considerably
less powerful than your original choice).

Once you have decided on the test that you will use you can also begin to think about
the power of the experiment you are proposing, and the kinds of sample sizes that will
be required to make your study worth doing. Unless you know how you will analyse your
data in advance it is impossible to make sensible estimates of power (since the power
will depend on the test that you choose—see Chapter 6 for more on power).

Whilst these procedures might seem very long winded and slightly daunting,
especially if you are not yet confident with statistics, we hope you can now begin to see
clearly how thinking about the statistics when you think about your design, and long
befere you collect data, will ensure that you collect the data that allows you to answer
your biological question most effectively.



STATISTICS BOX 8.2 Types of measurement

Different statistical tests require different types of data. It is common to split data
into the following types:

» Nominal scales: s nominal scale is a collection of categories into which subjects
can be assigned. Categories should be mutually exclusive but there is no order
to the categories. Fxamples include species or sex.

« Ordinal scales are like nominal scales except now there is a rank order to the
categories. For example, the quality of second-hand CDs might be categorized
according to the ordinal scale: poor, fair, good, very good, or mint.

» Interval scales are like ordinal scales except that we can now meaningfully
specify how far apart two units are on such a scale, and thus addition or
subtraction of twa units on such a scale is meaningful. Date is an example of an
interval scale.

= Ratio scales are like interval scales except that an absolute zero on the scale
is specified so that multiplication or division of two units on the scale becomes
meaningful. Ratio scales can be either continuous (e.g. mass, length) or discrete
(number of eggs laid, number of secondary infections produced).

Our advice is that you should try and take measurements as far down this list as
you can, as this gives you more flexibility in your statistical analysis. Hence, if you
are recording the mass of newborn infants then try to actually take a measurement
in grams (a ratio measurement) rather than simply categorizing each baby as either
light, ‘normal, or ‘heavy’; as this will increase the number and effectiveness of the
statistical tools that you can bring to bear on your data. Of course, by taking our
advice and deciding before data collection what statistical tests you will carry out,
you will already know the type of data you require.

9 Think about the statistics you will use before you collect your data.

B Summary

For factorial experiments, your analysis will be a lot easier if you have a
complete design.

Often hypotheses we are interested in testing involve the interaction between
factors.

If you are interested in such an interaction effect, then you must ensure that
your experimental design and statistical analysis allow you to directly explore
this interaction.

Take care to avoid confusing levels and factors.

Summary 125
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« Split-plot designs should only really interest you in an experiment with multiple
factors where one factor can be allocated easily to groups of experimental
units, but is practically awkward to assign to individual experimental units.

« The Latin square design is an alternative to a fully randomized factorial design
using fewer experimental units. However, it can only be used to ask a very
restricted set of scientific questions.

 Think about the statistics you will use before you collect your data.




