The simplest type of
experimental design:
completely randomized,
single-factor

e We begin by introducing one-factor completely randomized designs with two
levels of the factor as a simple but powerful means of organizing an experiment
(Section 7.1).

 Key to such designs, and to many experiments, is randomization to deal with
confounding factors, and we discuss how to do this effectively (Section 7.2).

e We then explore how the number of levels of the factor can often usefully be
increased beyond two (Section 7.3).

e We finish this chapter with an overview of the types of situation that would
encourage you to adopt this type of design, and the types of situation that
might cause you to instead adopt one of the designs described in later chapters
(Section 7.4).

So far in this book we have focused on the basic ingredients of good experiments,
such as proper replication and effective controls. We now turn to specific experi-
mental designs to see how these ingredients can be combined to answer biological
questions. One way to think about different experimental designs is as different
ways to deal with all of the potential sources of confounding variation and noise.
As we will see (in Section 7.4), the design that you choose will be determined by the
question that you are asking, and the biology of your study system (in particular
the potential sources of variation); and will determine the kind of statistical analy-
sis that you are able to do. At first sight, the experimental design literature can
seem daunting, and full of complex terms and jargon. However, there is really noth-
ing difficult about the ideas behind these terms. We will introduce and define the
commonest terms as we go along. In this chapter we will go through the process of
setting up the simplest experimental design, bringing together ideas from previous
chapters. In subsequent chapters we will build on this simple design, at each stage
focusing on how the additional complexity of the design deals with variation and
affects the questions that we can ask.
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An n-factor or n-way

design varies ndifferent
independent factors and
measures responses to these
manipulations. For example,
an experiment looking at

the effects of both diet and
exercise regime on dogs’
health would be a two-

factor design. If we consider
three different diets, then
there are three levels of the
experimental factor ‘diet’.

If nis greater than one

(i.e. multiple factors

are involved), then the
experiment can be referred to
as a factorial experiment.

Randomizing the allocation
of experimental subjects to
experimental groups simply
means that each subject

is allocated at random to

a group, with any subject
being equally likely to end
up being allocated to any of
the groups. This process is
also called random allocation,
simple random allocation,
random assignment, or
random placement.

Q 7.1 We have assumed

that the experiment
should have a concurrent
control (in the jargon we
introduced in Section 2.3.1).

Would you be tempted to halve

the size of the experiment and

use a historical control instead?

7.1 Completely randomized single-factor designs

Let's start with a simple biological question:
Does plant feed affect the growth of tomato plants?

To answer this question we are cbviously going to need to apply some plant feed to
some tomate plants and measure some aspect of their growth, perhaps their dry
weight after a few weeks of growing. We are also going to need some form of control
s0 that we know what growth we might expect in the absence of the plant feed. In this
case our control would be tomato plants that are not given the plant feed but are oth-
erwise handled in an identical way.

Now we need to introduce some jargon. Our experimental manipulation affects a
single factor, the presence ar absence of plant feed, and so this design is known as a
one-factor design (you will also see it referred to as a one-way design). Our factor has
two levels, since our experiment has two treatments (plant feed’ and ‘control).

Of course for all the reasons outlined in Chapter 4, we can't just compare the growth
of two plants, one with and one without plant feed. We need several plants in both our
‘plant feed and ‘control treatment groups, or to use more jargon, our experiment needs
to be replicated. In this case we have B0 tomato plant seedlings all ready to be usedin
our experiment. All we need to do is allocate them to our two treatment groups, apply
the plant feed to those in the plant-feed treatment group, and our experiment is ready
to go. However, an important question remains, how should we decide which plants go
into which treatment group? In this simple experimental design, the answer is egually
simple: randomization.

9 A simple one-way design allows us to compare the effects of different levels
of a single factor.

7.2 Randomization

7.2.1 Randomizing study subjects

The experimental subjects of any study will vary for many reasons that are nothing
to do with the factors that we are interested in. The chickens in Chapter 4 produced
eggs with different shell thickness for many reasons that were nothing to do with the
kind of feed they had been given. Similarly, in our current study, plants will vary in their
growth for all sorts of reasons that have nothing to do with whether they are treated
with plant feed or not. Our challenge is to separate the effects we are interested in
(in this case any effect of plant feed) from all of this background noise. We want to
ensure that there are no systematic differences between the plants in our two treat-
ment groups fram any of these other sources of variation in growth, otherwise any
differences caused by our experimental treatment could be confounded with these
other factors and cause us to draw erroneous conclusions. Imagine that there are small




differences in the quality of the compost in each pot that our plants are growing in, and
that this has an effect on the growth of the plant. If, for whatever reason, the plants
with slightly better compost end up in the plant-feed group, whilst those with slightly
worse compost end up in the control group; then we are likely to see a difference in
growth rate between our groups, even if the plant feed has no effect at all. This is
true for any of the other factors that might affect plant growth. So our task is to en-
sure that the only systematic difference between the plants in each treatment group
is the factor of interest (presence or absence of plant feed). The simplest solution to
this problem is to let chance decide: to randomly allocate subjects to each treatment
group (say by tossing a coin for each plant). By randomly allocating plants to treatment
groups we randomly spread the variation due to other potentially confounding factors
across treatments. This will minimize the chance of any systematic differences in other
factors affecting our conclusions. The major advantage of randomization is that it not
only deals with sources of variation that you might be suspicious about, such as com-
post quality, but also deals with all of the many ather potentially confounding factors
that you don't know about: everything gets randomized. It will probably not surprise
you to learn that this use of random allocation to treatments is what leads to this
type of study being referred to as a completely randomized design, since subjects are
assigned to treatment groups completely at random.

a Randomization is the key to avoiding confounding factors in planned
experiments.

7.2.2 Randomizing other aspects of your study

Randomizing the allocation of experimental subjects to treatments is a simple and
powerful way of avoiding systematic differences amongst treatment groups. However,
it is only the start. Our tomato plant study is going to take place in a greenhouse. Each
plant will be placed in an individual pot in the greenhouse. The size of the experiment
means that our plants will need to be spread over two benches within the greenhouse.
After 2 months, we will harvest the plants and measure their dry mass. There are marny
aspects of this experimental set up that may affect plant growth. Maybe the green-
hause is slightly warmer or lighter at one end than the other, or maybe the glass above
one of the benches is slightly older and sa lets through a different colour of light than
the glass above the other bench. The list could obviously go on. If we put all of our plant-
food-treated plants on one bench, and the control plants on the other bench, then
our replicates have effectively become pseudoreplicates, since treatment effects are
confounded with systematic differences between benches. The easiest way to avoid
this is to carry out further randomization. We can randomize the allocation of plants to
benches, and the position of plants on a single bench, such that any plant has an equal
probability of being in any part of the greenhouse.

However, the need to randomize does not just apply to the setting up of the
experiment. It can equally be applied to taking the measurements at the end of a
study. There are numerous reasons that can lead to the accuracy of measurements
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differing through time. Maybe the spectrophotometer that you are using is old, and
gets less accurate as time goes on. Or maybe you have spent 10 hours looking down
a microscope counting parasites, and the inevitable tiredness means that the later
counts are less accurate. Or maybe after watching 50 hours of great tit courtship
behaviour on video you become better at observing than you were at the beginning.
In the current study, perhaps the balance that we are using to weigh our dry tomato-
plant samples becomes less accurate as time goes on, or the dried samples take in
moisture through time, slowly increasing in mass. Whatever the reason, this reans that
if you take all the measurements on subjects from one treatment group first and then
all those from another treatment group, you risk introducing systematic differences
between the groups because of the changes in the accuracy of your measurement
methods. It is far better to organize your sampling procedure so that subjects are
measured in a random order (see Section 11.1 for more about this sort of problem).
In short, proper randomization at all stages of study is one of the most simple and
powerful tools available to us to avoid problems of systematic bias and confounding
variables. It ensures that sources of non-independence between subjects do not creep
into our study and lead us to unwittingly pseudoreplicate. We emphasize the word
‘proper’ here, because inadequate randomization is probably one of the most common
flaws in experimental design, in experiments by everyone from undergraduates to the
most eminent professors.

9 Randomization isn't just the way to avoid confounding variables when allo-
cating experimental subjects to different treatments; it is the key to avoiding
confounding variables creeping in at all stages of your experiment.

7.2.3 Haphazard allocation

The major problem that arises in randomization is that, for many people, when they say
that they randomly allocated subjects to treatments what they actually mean is that
they employed haphazard allocation. So what is the difference? Let’s briefly consider
a different study. Imagine we have a tank full of 40 hermit crabs that we want to use
in a behavioural experiment. The experiment requires that we allocate thern to one of
four different treatment groups. Random allocation would involve something like the
following:

« Each crab would be given a number from 1 to 40.

« Pieces of paper with numbers 1 to 40 are then placed in a hat.

« Ten numbers are drawn blindly, and the crabs with these numbers allocated to
treatment A.

« Ten more are drawn and allocated to treatment B, and so on until all crabs have
been allocated.

Of course, we could equally have drawn the first number and put that crab in treatment
A, the second in B, third in C, fourth in D, and then repeated until all treatments were



filled. However, what is important is that each crab has the same chance as any other
of ending up in any treatment group and so all of the random variation between crabs
is spread across treatments. Another way to think about a random sample is that the
treatment group selected for one subject has no effect whatsoever on the treatment
group selected for the next subject.

This randomization procedure contrasts with a haphazard sampling procedure. A
typical haphazard sampling procedure would involve placing one’s hand in the tank
and grabbing a crab without consciously aiming for a particular individual. This will
not give you a random sample. Even if you shut your eyes and think about your bank
balance, this is still not going to give you a random sample. The reason for this is that
there are a large number of reasons that could cause the first crabs to be picked out
to be systematically different from the last crabs. Perhaps smaller crabs are better at
avoiding your grasp than larger ones. ‘Hold on. you say, ‘what about if | pick the crabs
out in this way and then allocate them to a group without thinking, surely this will give
me random groups?. Well, maybe it will, but probably it won't, depending on how good
you are at not thinking. It is very tempting to subconsciously think, Tve just allocated
a crab to treatment A, so | guess the next ane should be given a different treatment’,
This is not random. So if you really want random groups, the only way to get them is to
randomize properly, by pulling numbers from a hat, or generating random sequences on
a computer. It may seem like a nuisance, and it may take you an extra half an hour, but
an extra half hour is a small price to pay for being confident that the results that you
obtain after weeks of work actually mean something.

o Always randomize properly, don't be tempted into using easier procedures
which are open to bias.

7.2.4 Balanced and unbalanced allocation

Now that we understand the importance of randomization, we allocate our tomato
plants at random to our two different treatment groups. One way to do this would be
to take each plant in turn and flip a coin. We then allocate the plant to the plant-feed
group if we see heads, and the control is we see tails. This procedure would certainly
achieve a random allocation of plants, but because of the vagaries of random sampling
we are very likely to end up with slightly different numbers of plants in each treatment
group: perhaps 36 in one and 44 in the other. In statistical jargon, our experiment is
unbalanced. This is not a fatal flaw in our experiment, but it does have drawbacks.
Generally the statistical methods that we will ultimately use to analyse the data are
most powerful, and least influenced by violations of assumptions, when there are equal
numbers in each group. Only in unusual circumstances should we deliberately seek to
use unequal numbers. Thus aiming for equal numbers, or as a statistician would say for
a balanced design, should be a general tenet of your experimental designs. A better
way to assign the plants would be to add a constraint that the final number in each
group must be 40. Practically, this could be done by numbering all of the plants, then
putting these numbers on identical pieces of card in a bag, mixing them thoroughly
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A balanced experimental
design has equal numbers
of experimental units in
each treatment group; an
unbalanced design does not.
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@ You can find one example
of when you might use
unbalanced groups for ethical
reasons in Section 7.2.4 of the
supplementary material. Go to:
www.oxfordtextbooks.co.uk/
orc/ruxtonde/.

Q 7.2 If we carried out

three separate
experiments, one immediately
after the other, each comparing
a control group to either a low,
medium, or high rate of plant-
feed application, couldn’t we still
compare the effects of different
feeding rates?

then drawing them out. The first 40 numbers to be drawn would be assigned to the first
treatment group, and so on.

We have now designed our study, so let’s revisit some of the jargon. We have used a
completely randomized one-factor design, with a factor that has two levels. Our design
is also fully replicated and balanced. You can see how the terminology can become
complicated very quickly, but the underlying logic is straightforward. This design allows
us to look for differences between two groups. As we emphasized in Statistics Box 2.1,
the final component we need to think about as we plan our study is how we will analyse
our data. A major advantage in using simple, well understood designs is that they lead
very naturally to statistical tests that we can use to answer the question once we have
our data. The most obvious choices to analyse data from a single-factor design with
two levels of the factor would be to use a t-test, or its non-parametric alternative, the
Mann-Whitney U test.

o Always aim to balance your experiments, unless you have a very good reason
not to.

7.3 Factors with more than one level

Now that we understand this simple design we can start to expand it to address other
questions. One obvious way we might expand our study is to add additional levels for
our factor. Thus, suppose that we wanted to explore the effects of supplying the plant
feed at different rates (let's call the rates low, medium, and high). In principle we could
repeat the study above for each rate in turn, but a much better alternative would be
to examine the feeding rates in the same study, by including four groups: (i) control
(no plant feed), (i) feed provided at low rate, (iii) feed provided at medium rate, and
(iv) feed provided at high rate. This is still a one-factor design because we are still only
manipulating a single factor (rate of plant feed delivery), but now our factor has four
levels instead of two. There are multiple advantages to this; most obviously it allows us
to compare each feeding rate to the others, as well as to the control. That is, we can
answer several questions with a single study:

Does providing plant feed at a low rate affect the growth of tomato plants?

Does providing plant feed at a medium rate affect the growth of tomato plants?

Does providing plant feed at a high rate affect the growth of tomato plants?
Do the three feeding rates differ in their effect on the growth of tomato plants?

This single four-level experiment is also a more efficient use of plants than three two-level
ones, since we can compare the three feeding rate treatments to the same control plants
rather than needing three separate sets of control plants. Of course, everything that we
discussed abave about setting up the simple design applies equally to this design. We would
randomly allocate our plants to the treatment groups, and randomize everything else that
we could. We would also probably have equal numbers of plants in each treatment group,
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ensuring that our design is balanced. Putting all of this together we could describe our ex-
periment as a completely randomized one factor design with four levels of the factor and
that it is fully replicated and balanced. As for the analysis, in this case your design naturally
leads to either a one-way analysis of variance [ANOVA) or a Kruskal-Wallis test.

9 A larger experiment with several levels of the same factor is always more ef-
ficient than a collection of smaller experiments.

7.4 Advantages and disadvantages of complete
randomization

Imagine that you have twenty plants for a growth trial, and you split them randomly into
four groups, each of which is given a different feed treatment. If all goes well, you will have
twenty growthrates to analyse at the end of the experiment. However, if a plant becomes
diseased, or is knocked off the bench, or some other catastrophe befalls it such that the
growth rate of that plant cannot be obtained or no longer provides a fair reflection of the
treatment, then you will have fewer measurements to work with. The lost or omitted cases
are generally called missing values or drop-out cases. Obviously, experiments should be
designed to minimize the likelihood of such drop-outs occurring. However, accidents do
happen, so you should seek experimental designs where a small number of drop-outs do
not have a devastating effect on the usefulness of the remaining data.

The attraction of complete randomization is that it is very simple to design. It also
has the attraction that the statistics that will eventually be used on the data are simple
and robust to differences in sample sizes, so having missing values is less of a problem.
Also, in contrast to some designs that we will see in Chapter 10, each experimental unit
undergoes only one manipulation; this means that the experiment can be performed
quickly and that ethical drawbacks to multiple procedures or long-term confinement
are minimized. It tends to be that the probability that a subject will drop out of the study
increases with the length of time over which they need to be involved in the study, so
the drop-out rate should be lower than in some other types of experiments.

The big drawback to full randomization is that we are comparing between subjects. As
we saw in previous chapters, between-subject variation due to random factors makes it
difficult for us to detect the effects of the manipulations that we have carried out, and
so reduces our statistical power. If the growth rates of tomato plants are highly variable
due to other factors, this may make it very hard for us to detect the effects of our
different feeding regimes. With a completely randomized design, then the only real option
to deal with this problem is to increase sample size, with all of the associated ethical,
conservation, or financial costs this may incur (and the experiment will also use more
of our time). An alternative approach is ta consider using a more complex experimental
design that explicitly takes some of these sources of variation into account. We will
explare thase in Chapters 9 and 10; but before that we will spend Chapter 8 exploring
why you might often want to vary more than a single factor within an experiment, and
how you might most effectively design experiments that incorporate multiple factors.

Q 7.3 What could we doin
our tomato plant trial to
minimize drop-outs?

Q 7.4 Aresearcher is

interested in whether
competition affects the
development time of beetle
larvae that complete their larval
development within mung beans.
To do this she allows adult
females to lay eggs on mung
beans for several hours, and then
examines each bean, counting
the number of eggs that it
carries. She randomly picks 50 of
the beans carrying single eggs
for her low-competition
treatment, and 50 of the beans
carrying two eggs for her
competition treatment, and then
measures the time larvae take to
develop in these two treatments.
Do you see any problems in this
approach? How might it be
improved upon?
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3 If between-subject variation is low, then complete randomization can be
quite powerful, hence it is commonly used in laboratory studies. It is also
attractive if you expect high drop-out rates among subjects. Field studies and
clinical trials tend to suffer more from between-subject variation, and so for these
the designs discussed in Chapters 9 and 10 may be more attractive.

Summary

A simple one-way design allows us to compare the effects of different levels of
a single factor.

« Randomization is the key to avoiding confounding factors in planned
experiments.

¢ Randomization isn’t just the way to avoid confounding variables when allocating
experimental subjects to different treatments; it is the key to avoiding
confounding variables creeping in at all stages of your experiment.

= Always randomize properly, don’t be tempted into using easier procedures
which are open to bias.

« Aim to have a balanced (or near-balanced) experiment with the same (or very
similar) numbers of experimental subjects in each treatment group.

« A larger experiment with several levels of the same factor is always more
efficient than a collection of smaller experiments.

« If between-subject variation is low, or drop-out rates are expected to be
high, then complete randomization is an attractive technique. Otherwise the
methods considered in Chapters 9 and 10 may be more attractive.




