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Chapter 2
Scientific inference

Scientists often tell us things about the world that we would not 
otherwise have believed. For example, biologists tell us that we are 
closely related to chimpanzees, geologists tell us that Africa and 
South America used to be joined together, and cosmologists tell us 
that the universe is expanding. But how did scientists reach these 
unlikely sounding conclusions? After all, no one has ever seen one 
species evolve from other, or a single continent split into two, or 
the universe getting bigger. The answer, of course, is that scientists 
arrived at these beliefs by a process of reasoning or inference. But 
it would be nice to know more about this process. What exactly 
is the nature of scientific inference?

Deduction and induction

Logicians make an important distinction between deductive and 
inductive inference, or deduction and induction for short. An 
example of a deductive inference is the following:

All Frenchmen like red wine

Pierre is a Frenchman
_______________________

Therefore, Pierre likes red wine
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The two statements above the line are called the premises of the 
inference, while the statement below the line is called the 
conclusion. This is a deductive inference because it has the 
following property: if the premises are true, then the conclusion 
must be true too. If it’s true that all Frenchmen like red wine, and 
that Pierre is a Frenchman, it follows that Pierre does indeed like 
red wine. This is sometimes expressed by saying that the premises 
of the inference entail the conclusion. Of course the premises of 
this inference are almost certainly not true—there are bound to 
be Frenchmen who do not like red wine. But that is not the point. 
What makes the inference deductive is the existence of an 
appropriate relation between premises and conclusion, namely 
that the truth of the premises guarantees the truth of the 
conclusion.

Not all inferences are deductive. Consider the following  
example:

The first five eggs in the box were good.

All the eggs have the same best-before date stamped on them.
_______________________

Therefore, the sixth egg will be good too.

This looks like a perfectly sensible piece of reasoning. But 
nonetheless it is not deductive, for the premises do not entail the 
conclusion. Even if the first five eggs were good, and all the 
eggs do have the same date stamp, it is quite conceivable that the 
sixth egg will be rotten. That is, it is logically possible for the 
premises of this inference to be true and yet the conclusion false, 
so the inference is not deductive. Instead it is known as an 
inductive inference. In a typical inductive inference, we move 
from premises about objects that we have examined to conclusions 
about objects of the same sort that we haven’t examined—in this 
example, eggs.
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Deductive inference is safer than its inductive cousin. When we 
reason deductively, we can be certain that if we start with true 
premises we will end up with a true conclusion. By contrast, 
inductive reasoning is quite capable of taking us from true premises 
to a false conclusion. Despite this defect, we seem to rely on 
inductive reasoning throughout our lives. For example, when 
you turn on your computer in the morning, you are confident it 
will not explode in your face. Why? Because you turn on your 
computer every morning, and it has never exploded up to now. 
But the inference from ‘up until now, my computer has not 
exploded when I turned it on’ to ‘my computer will not explode 
this time’ is inductive, not deductive. It is logically possible that 
your computer will explode this time, even though it has never 
done so before.

Do scientists use inductive reasoning too? The answer seems to 
be yes. Consider the condition known as Down’s syndrome 
(DS). Geneticists tell us that people with DS have three copies 
of chromosome 21 instead of the usual two. How do they know 
this? The answer, of course, is that they examined a large number 
of people with DS and found that each had an additional copy of 
chromosome 21. They then reasoned inductively to the conclusion 
that all people with DS, including those they hadn’t examined, 
have an additional copy. This inference is inductive not deductive. 
For it is possible, though unlikely, that the sample examined was 
unrepresentative. This example is not an isolated one. In e!ect, 
scientists reason inductively whenever they move from limited 
data to a more general conclusion, which they do all the time.

The central role of induction in science is sometimes obscured 
by how we talk. For example, you might read a newspaper report 
which says that scientists have found ‘experimental proof ’ that 
genetically modified maize is safe to eat. What this means is that 
the scientists have tested the maize on a large number of people 
and none have come to any harm. But strictly speaking this doesn’t 
prove that the maize is safe, in the sense in which mathematicians 
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can prove Pythagoras’ theorem, say. For the inference from ‘the 
maize didn’t harm any of the people on whom it was tested’ to 
‘the maize will not harm anyone’ is inductive, not deductive. The 
newspaper report should really have said that scientists have 
found good evidence that the maize is safe for humans. The word 
‘proof ’ should strictly only be used when we are dealing with 
deductive inferences. In this strict sense of the word, scientific 
hypotheses can rarely if ever be proved true by the data.

Most philosophers think it’s obvious that science relies heavily on 
induction, indeed so obvious that it hardly needs arguing for. But 
remarkably, this was denied by the philosopher Karl Popper, 
whom we met in the last chapter. Popper claimed that scientists 
only need to use deductive inferences. This would be nice if it were 
true, for deductive inferences are safer than inductive ones, as we 
have seen.

Popper’s basic argument was this. Although a scientific theory 
(or hypothesis) can never be proved true by a finite amount of 
data, it can be proved false, or refuted. Suppose a scientist is 
testing the hypothesis that all pieces of metal conduct electricity. 
Even if every piece of metal they examine conducts electricity, 
this doesn’t prove that the hypothesis is true, for reasons that 
we’ve seen. But if the scientist finds even one piece of metal that 
fails to conduct electricity, this conclusively refutes the theory. 
For the inference from ‘this piece of metal does not conduct 
electricity’ to ‘it is false that all pieces of metal conduct electricity’ 
is a deductive inference—the premise entails the conclusion. 
So if a scientist were trying to refute their theory, rather than 
establish its truth, their goal could be accomplished without the 
use of induction.

The weakness of Popper’s argument is obvious. For the goal of 
science is not solely to refute theories, but also to determine which 
theories are true (or probably true). When a scientist collects 
experimental data, their aim might be to show that a particular 
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theory—their arch-rival’s theory perhaps—is false. But much more 
likely, they are trying to convince people that their own theory is 
true. And in order to do that, they will have to resort to inductive 
reasoning of some sort. So Popper’s attempt to show that science 
can get by without induction does not succeed.

Hume’s problem

Although inductive reasoning is not logically watertight, it seems 
like a sensible way of forming beliefs about the world. Surely the 
fact that the sun has risen every day in the past gives us good 
reason to believe that it will rise tomorrow? If you came across 
someone who professed to be entirely agnostic about whether the 
sun will rise tomorrow or not, you would regard them as very 
strange indeed, if not irrational.

But what justifies this faith we place in induction? How should 
we go about persuading someone who refuses to reason inductively 
that they are wrong? The 18th-century Scottish philosopher 
David Hume (1711–76) gave a simple but radical answer to this 
question. He argued that the use of induction cannot be 
rationally justified at all. Hume admitted that we use induction 
all the time, in everyday life and in science, but insisted that this 
was a matter of brute animal habit. If challenged to provide a 
good reason for using induction, we can give no satisfactory 
answer, he thought.

How did Hume arrive at this startling conclusion? He began by 
noting that whenever we make inductive inferences, we seem 
to presuppose what he called the ‘uniformity of nature’. To see 
what Hume meant by this, recall our examples. We had the 
inference from ‘the first five eggs in the box were good’ to ‘the 
sixth egg will be good’; from ‘the Down’s syndrome patients 
examined had an extra chromosome’ to ‘all those with Down’s 
syndrome have an extra chromosome’; and from ‘my computer 
has never exploded until now’ to ‘my computer will not explode 
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today’. In each case, our reasoning seems to depend on the 
assumption that objects we haven’t examined will be similar, in 
relevant respects, to objects of the same sort that we have 
examined. That assumption is what Hume means by the 
uniformity of nature.

But how do we know that the uniformity assumption is true? Can 
we perhaps prove its truth somehow? No, says Hume, we cannot. 
For it is easy to imagine a world where nature is not uniform but 
changes its course randomly from day to day. In such a world, 
computers might sometimes explode for no reason, water might 
sometimes intoxicate us without warning, and billiard balls might 
sometimes stop dead on colliding. Since such a non-uniform 
world is conceivable, it follows that we cannot prove that the 
uniformity assumption is true. For if we could, then the non-uniform 
universe would be a logical impossibility.

Even if we cannot prove the uniformity assumption, we might 
nonetheless hope to find good empirical evidence for its truth. 
After all, the assumption has always held good up to now, so 
surely this is evidence that it is true? But this begs the question, 
says Hume! Grant that nature has behaved largely uniformly up 
to now. We cannot appeal to this fact to argue that nature will 
continue to be uniform, says Hume, because this assumes that 
what has happened in the past is a reliable guide to what will 
happen in the future—which is the uniformity of nature 
assumption. If we try to argue for the uniformity assumption 
on empirical grounds, we end up reasoning in a circle.

The force of Hume’s point can be appreciated by imagining how 
you would persuade someone who doesn’t trust inductive 
reasoning that they should. You might say: ‘look, inductive 
reasoning has worked pretty well up until now. By using induction 
scientists have split the atom, landed on the moon, and invented 
lasers. Whereas people who haven’t used induction have died 
nasty deaths. They have eaten arsenic believing it would nourish 
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them, and jumped o! tall buildings believing they would fly. 
Therefore it will clearly pay you to reason inductively.’ But this 
wouldn’t convince the doubter. For to argue that induction is 
trustworthy because it has worked well up to now is to reason 
inductively. Such an argument would carry no weight with 
someone who doesn’t already trust induction. That is Hume’s 
fundamental point.

This intriguing argument has exerted a powerful influence on the 
philosophy of science. (Popper’s attempt to show that science need 
only use deduction was motivated by his belief that Hume had 
shown the unjustifiability of induction.) The influence of Hume’s 
argument is not hard to understand. For normally we think of 
science as the very paradigm of rational enquiry. We place great 
faith in what scientists tell us about the world. But science relies 
on induction, and Hume’s argument seems to show that induction 
cannot be rationally justified. If Hume is right, the foundations 
on which science is built do not look as solid as we might have 
hoped. This puzzling state of a!airs is known as Hume’s problem 
of induction.

Philosophers have responded to Hume’s problem in literally 
dozens of ways; this is still an active area of research today. One 
response says that to seek a ‘justification of induction’, or to 
bemoan the lack of one, is ultimately incoherent. Peter Strawson, 
an Oxford philosopher from the 1950s, defended this view with 
the following analogy. If someone worried whether a particular 
action was legal, they could consult the lawbooks and see what they 
say. But suppose someone worried about whether the law itself 
was legal. This is an odd worry indeed. For the law is the standard 
against which the legality of other things is judged, and it makes 
little sense to enquire whether the standard itself is legal. The 
same applies to induction, Strawson argued. Induction is one of 
the standards we use to decide whether someone’s beliefs about 
the world are justified. So it makes little sense to ask whether 
induction itself is justified.
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Has Strawson really succeeded in defusing Hume’s problem? 
Some philosophers say yes, others say no. But most agree that it is 
very hard to see how there could be a satisfactory justification of 
induction. (Frank Ramsey, a famous Cambridge philosopher, 
wrote in 1919 that to ask for a justification of induction was ‘to cry 
for the moon’.) Whether this is something that should worry us, or 
shake our faith in science, is a di"cult question that you should 
ponder for yourself.

Inference to the best explanation

The inductive inferences we’ve examined so far have all had 
essentially the same structure. In each case, the premise has had 
the form ‘all examined Fs have been G’, and the conclusion the 
form ‘other Fs are also G’. In short, these inferences take us from 
examined to unexamined instances of a given kind.

Such inferences are widely used in everyday life and in science, 
as we have seen. However, there is another common type of 
non-deductive inference which doesn’t fit this simple pattern. 
Consider the following example:

The cheese in the larder has disappeared, apart from a few crumbs.

Scratching noises were heard coming from the larder last night.
_________________________________________________

Therefore, the cheese was eaten by a mouse.

It is obvious that this inference is non-deductive: the premises do 
not entail the conclusion. For the cheese could have been stolen by 
the maid, who cleverly left a few crumbs to make it look like the 
handiwork of a mouse; and the scratching noises could have been 
caused by the boiler overheating. Nonetheless, the inference is 
clearly a reasonable one. For the hypothesis that a mouse ate the 
cheese seems to provide a better explanation of the data than the 
‘maid and boiler’ hypothesis. After all, maids do not normally steal 
cheese, and modern boilers rarely overheat. Whereas mice do eat 
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cheese when they get the chance, and do make scratching sounds. 
So although we cannot be certain that the mouse hypothesis is 
true, on balance it looks plausible.

Reasoning of this sort is known as ‘inference to the best explanation’, 
or IBE for short. Certain terminological confusions surround the 
relation between IBE and induction. Some philosophers describe 
IBE as a type of inductive inference; in e!ect, they use ‘inductive 
inference’ to mean ‘any inference which is not deductive’. Others 
contrast IBE with induction, as we have done. On this way of 
cutting the pie, ‘induction’ is reserved for inferences from examined 
to unexamined instances of a given kind; IBE and induction are 
then two di!erent types of non-deductive inference. Nothing 
hangs on which choice of terminology we favour, so long as we 
stick to it consistently.

Scientists frequently use IBE. For example, Darwin argued for 
his theory of evolution by calling attention to various facts about 
the living world which are hard to explain if we assume that 
current species have been separately created, but which make 
perfect sense if current species have descended from common 
ancestors, as his theory held. For example, there are close 
anatomical similarities between the legs of horses and zebras. 
How do we explain this, if God created horses and zebras 
separately? Presumably he could have made their legs as 
di!erent as he pleased. But if horses and zebras have descended 
from a common ancestor, this provides an obvious explanation 
of their anatomical similarity. Darwin argued that the ability of 
his theory to explain such facts constituted strong evidence for 
its truth. ‘It can hardly be supposed’, he wrote, ‘that a false 
theory would explain, in so satisfactory a manner as does the 
theory of natural selection, the several large classes of fact  
above specified.’

Another example of IBE is Einstein’s famous work on Brownian 
motion—the zig-zag motion of microscopic particles suspended in 
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a liquid or gas. A number of attempted explanations of Brownian 
motion were advanced in the 19th century. One theory attributed 
the motion to electrical attraction between particles, another to 
agitation from external surroundings, and another to convection 
currents in the fluid. The correct explanation is based on the 
kinetic theory of matter, which says that liquids and gases are 
made up of atoms or molecules in motion. The suspended 
particles collide with the surrounding molecules, causing their 
erratic movements. This theory was proposed in the late 19th 
century but not widely accepted, not least because many scientists 
didn’t believe that atoms and molecules were real entities. But in 
1905, Einstein provided an ingenious mathematical treatment of 
Brownian motion, making a number of predictions that were later 
confirmed experimentally. After Einstein’s work, the kinetic theory 
was quickly agreed to provide a better explanation of Brownian 
motion than the alternatives, and scepticism about the existence 
of atoms and molecules subsided.

The basic idea behind IBE—reasoning from one’s data to a theory 
or hypothesis that explains the data—is straightforward. But how 
do we decide which of the competing hypotheses provides the 
‘best explanation’ of the data? What criteria determine this? One 
popular answer is that a good explanation should be simple, or 
parsimonious. Consider again the cheese-in-the-larder example. 
There are two pieces of data that need explaining: the missing 
cheese and the scratching noises. The mouse hypothesis postulates 
just one cause—a mouse—to explain both pieces of data. But 
the maid-and-boiler hypothesis must postulate two causes—a 
dishonest maid and an overheating boiler—to explain the same 
data. So the mouse hypothesis is more parsimonious, hence better. 
The Darwin example is similar. Darwin’s theory could explain a 
diverse range of facts about the living world, not just anatomical 
similarities between species. Each of these facts could in principle 
be explained in other ways, but the theory of evolution explained 
all the facts in one go—that is what made it the best explanation of 
the data.
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The idea that simplicity or parsimony is the mark of a good 
explanation is quite appealing, and helps flesh out the abstract 
idea of IBE. But if scientists use simplicity as a guide to inference, 
this raises a deep question. Do we have reason to think that the 
universe is simple rather than complex? Preferring a theory 
which explains the data in terms of the fewest number of causes 
seems sensible. But are there any objective grounds for thinking 
that such a theory is more likely to be true than a less simple 
rival? Or is simplicity something that scientists value because it 
makes their theories easier to formulate and to understand? 
Philosophers of science do not agree on the answer to this 
di"cult question.

Causal inference

A key goal of science is to discover the causes of natural 
phenomena. Often this quest is successful. For example, climate 
change scientists know that burning fossil fuels causes global 
warming; chemists know that heating a liquid causes it to become 
a gas; and epidemiologists know that the MMR vaccine does not 
cause autism. Since causal connections are not directly observable 
(as David Hume famously argued), scientific knowledge of this 
sort must be the result of inference. But how exactly does causal 
inference work?

It is helpful to distinguish two cases: inferring the cause of a 
particular event versus inferring a general causal principle. 
To illustrate the distinction, consider the contrast between 
‘a meteorite strike caused the extinction of the dinosaurs’ and 
‘smoking causes lung cancer’. The former is a singular statement 
about the cause of a particular historical event, the latter a general 
statement about the cause of a certain sort of event (getting lung 
cancer). In both cases a process of inference has led scientists to 
believe the statements in question, but the inferences work in 
somewhat di!erent ways. Here we focus on inferences of the 
second sort, i.e. to general causal principles.
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Suppose a medical researcher wishes to test the hypothesis that 
obesity causes depression. How should they proceed? A natural 
first step is to see whether the two attributes are correlated. To 
assess this, they could examine a large sample of obese people, and 
see whether the incidence of depression is higher in this group 
than in the general population. If it is, then unless there is some 
reason to think the sample unrepresentative, it is reasonable to 
infer (by ordinary induction) that obesity and depression are 
correlated in the overall population.

Would such a correlation show that obesity causes depression? 
Not necessarily. First-year science students are routinely taught 
that correlation does not imply causation, and with good reason. 
For there are other possible explanations of the correlation. The 
direction of causation could be the other way round, i.e. being 
depressed might cause people to eat more, hence to become obese. 
Or there might be no causal influence of obesity on depression nor 
vice versa, but the two conditions are joint e!ects of a common 
cause. For example, perhaps low income raises the chance of 
obesity and also raises the chance of depression via a separate 
causal pathway (see Figure 3). If so, we would expect obesity and 
depression to be correlated in the population. This ‘common 
cause’ scenario is a major reason why causation cannot always be 
reliably inferred from correlational data.

How could we test the hypothesis that low income causes both 
obesity and depression? The obvious thing to do is to find a 
sample of individuals all with the same income level, and examine 

low income

obesity

depression

3. Causal graph depicting the hypothesis that low income is a common 
cause of both obesity and depression.
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whether obesity and depression are correlated within the sample. 
If we do this for a number of di!erent income levels, and find 
that within each income-homogeneous sample the correlation 
disappears, this is strong evidence in favour of the common cause 
hypothesis. For it shows that once income is taken into account, 
obesity is no longer associated with depression. Conversely, if a 
strong obesity–depression correlation exists even among 
individuals with the same income level, this is evidence against 
the common cause hypothesis. In statistical jargon, this procedure 
is known as ‘controlling for’ the variable income.

The underlying logic here is similar to that of the controlled 
experiment, a mainstay of modern science. Suppose an entomologist 
wishes to test the hypothesis that rearing insect larvae at higher 
temperatures leads to reduced adult body size. To test this, the 
entomologist gets a large number of insect larvae, rears some at a 
cool and others at a warm temperature, then measures the size of 
the resulting adults. For this to be an e!ective test of the causal 
hypothesis, it is important that all factors other than temperature 
be held constant between the two groups, so far as possible. For 
example, the larvae should all be from the same species, the same 
sex, and be fed the same food. So the entomologist must design 
their experiment carefully, controlling for all variables that could 
potentially a!ect adult body size. Only then can a di!erence in 
adult body size between the two groups safely be attributed to the 
temperature di!erence.

It is sometimes argued that controlled experiments are the only 
reliable way of making causal inferences in science. Proponents 
of this view argue that purely observational data, without 
any experimental intervention, cannot give us knowledge of 
causality. However this is a controversial thesis. For while 
controlled experimentation is certainly a good way of probing 
nature’s secrets, the technique of statistical control can often 
accomplish something quite similar. In recent years, statisticians 
and computer scientists have developed powerful techniques 
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for making causal inferences from observational data. Whether 
there is a fundamental methodological di!erence between 
experimental and observational data, vis-à-vis the reliability of 
the causal inferences that can be drawn from them, is a matter of 
continuing debate.

In modern biomedical science, a particular sort of controlled 
experiment is often given particular prominence. This is the 
randomized controlled trial (RCT), originally devised by 
R. A. Fisher in the 1930s, and often used to test the e!ectiveness 
of a new drug. In a typical RCT, patients with a particular medical 
condition, e.g. severe migraine, are divided into two groups. Those 
in the treatment group receive the drug, while those in the control 
group do not. The researchers then compare the two groups on 
the outcome of interest, e.g. relief of migraine symptoms. If those 
in the treatment group do significantly better than the control 
group, this is presumptive evidence that the drug works. The 
key feature of an RCT is that the initial division of the patients 
into two groups must be done at random. Fisher and his modern 
followers argue that this is necessary to sustain a valid causal 
inference.

Why is randomization so important? Because it helps to eliminate 
the e!ect of confounding factors on the outcome of interest. 
Typically the outcome will be a!ected by many factors, e.g. age, 
diet, and exercise. Unless all of these factors are known, the 
researcher cannot explicitly control for them. However by 
randomly allocating patients to the treatment and control groups, 
this problem can be largely circumvented. Even if factors other 
than the drug do a!ect the outcome, randomization ensures that 
any such factors are unlikely to be over-represented in either 
the treatment or the control group. So if there is a significant 
di!erence in outcome between treatment and control groups, 
this is very likely due to the drug. Of course this does not strictly 
prove that the drug was causally responsible, but it constitutes 
strong evidence.
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In medicine, the RCT is usually regarded as the ‘gold standard’ for 
assessing causality. Indeed proponents of the movement known 
as ‘evidence-based medicine’ often argue that only an RCT can tell 
us when a particular treatment is causally e!ective. However this 
position is arguably too strong (and the appropriation of the word 
‘evidence’ to refer only to RCTs is misleading). In many areas of 
science, RCTs are not feasible, for either practical or ethical 
reasons, and yet causal inferences are routinely made. Furthermore, 
much of the causal knowledge we have in everyday life we gained 
without RCTs. Young children know that putting their hand in the 
fire causes a painful burning sensation; no randomized trial was 
needed to establish this. While RCTs are certainly important, and 
should be done when feasible, it is not true that they are the only 
way of discovering causality.

Probability and scientific inference

Given that inductive reasoning cannot give us certainty, it is 
natural to hope that the concept of probability will help us 
understand how it works. Even if a scientist’s evidence does not 
prove that their hypothesis is true, surely it can render it highly 
probable? Before exploring this idea we need to attend briefly to 
the concept of probability itself.

Probability has both an objective and a subjective guise. In its 
objective guise, probability refers to how often things in the 
world happen, or tend to happen. For example, if you are told 
that the probability of an Englishwoman living to age 90 is one 
in ten, you would understand this as meaning that one-tenth of all 
Englishwomen attain that age. Similarly, a natural understanding 
of the statement ‘the probability that the coin will land heads is a 
half ’ is that in a long sequence of coin flips, the proportion of 
heads would be very close to a half. Understood this way, statements 
about probability are objectively true or false, independently of 
what anyone believes.
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In its subjective guise, probability is a measure of rational degree 
of belief. Suppose a scientist tells you that the probability of 
finding life on Mars is extremely low. Does this mean that life is 
found on only a small proportion of all the celestial bodies? Surely 
not. For one thing, no one knows how many celestial bodies there 
are, nor how many of them contain life. So a di!erent notion of 
probability is at work here. Now since there either is life on Mars 
or there isn’t, talk of probability in this context must presumably 
reflect our ignorance of the state of the world, rather than 
describing an objective feature of the world itself. So it is natural 
to take the scientist’s statement to mean that in the light of all the 
evidence, the rational degree of belief to have in the hypothesis 
that there is life on Mars is very low.

The idea that the rational degree of belief to have in a scientific 
hypothesis, given the evidence, may be viewed as a type of 
probability suggests a natural picture of how scientific inference 
works. Suppose a scientist is considering a particular hypothesis 
H. In the light of the evidence to date, the scientist has a certain 
degree of belief in H, denoted P(H), which is a number between 
zero and one. (Another name for P(H) is the scientist’s ‘credence’ 
in H.) Some new evidence then comes to light, e.g. from 
experiment or observation. In the light of this new evidence, the 
scientist updates their credence in H to Pnew(H). If the new 
evidence supports the theory, then Pnew(H) will be greater 
than P(H), i.e. the scientist will have become more confident 
that H is true.

A toy example will help flesh this out. Suppose a playing card has 
been drawn from a well-shu#ed pack and is concealed from your 
view. Let H be the hypothesis that the card is the queen of hearts. 
What is the value of P(H), i.e. your initial rational credence in H? 
Presumably it is 1/52. For there are fifty-two cards in the pack and 
they are all equally likely to be chosen. Suppose you then learn 
that the chosen card is definitely a heart. Call this piece of 
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information e. In the light of e, what is the value of Pnew(H), i.e. 
your updated credence in H given the new evidence? Clearly, 
Pnew(H) should equal 1/13—for there are thirteen hearts in the 
pack and you know that the concealed card is one of them. So 
learning e has increased your credence in H from 1/52 to 1/13.

This is all fairly obvious, but what is the general rule for updating 
your credence in the light of new information? The answer is 
called ‘conditionalization’. To grasp this rule we need the concept 
of conditional probability. In the card example, P(H) is your 
initial credence in hypothesis H. Your initial credence in H 
conditional on the assumption that e is true is denoted P(H/e). 
(Read this as ‘the probability of H given e’.) What is the value of 
P(H/e)? The answer is 1/13. For on the assumption that e is true, 
i.e. that the card drawn is a heart, your credence in the hypothesis 
H equals 1/13. When you learn that e is actually true, your 
new credence in H, i.e. Pnew(H), should then be set equal to your 
initial credence in H conditional on e, according to the rule 
of conditionalization.

Rule of conditionalization

Upon learning evidence e, Pnew(H) should equal P(H/e).

To better understand the rule of conditionalization, note that the 
conditional probability P(H/e) is by definition equal to the ratio 
P(H and e)/P(e). In the card example, P(H and e) denotes your 
initial credence that both H and e are true. But since in this case H 
logically entails e—for if the card is the queen of hearts then it 
must be a heart—it follows that P(H and e) is simply equal to 
P(H), i.e. 1/52. What about P(e)? This is your initial credence that 
the chosen card is a heart. Since exactly one quarter of the cards in 
the deck are hearts, and you regard all the cards as equally likely 
to be the chosen one, it follows that P(e) is ¼. Applying the 
definition of P(H/e), this tells us that P(H/e) equals 1/52 divided 
by ¼, which is 1/13—the same answer as we computed previously.
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The rule of conditionalization may sound complicated, but like 
many logical rules we often obey it without thinking. In the card 
example, it is intuitively obvious that learning e should increase 
your rational credence in H from 1/52 to 1/13, and in practice this is 
exactly what most people would do. In doing so, they are implicitly 
obeying the rule of conditionalization even if they have never heard 
of it. In addition to its implicit uses, the conditionalization rule is 
often used explicitly by scientists, for example in certain sorts of 
statistical reasoning. The branch of statistics known as Bayesian 
statistics makes extensive use of updating by conditionalization. 
(The name ‘Bayesian’ refers to the 17th-century English clergyman 
Thomas Bayes, an early pioneer of probability theory, who 
discovered the conditionalization rule.)

Some philosophers of science wish to use updating by 
conditionalization as a general model for scientific inference, 
applicable even to inferences that are not explicitly probabilistic. 
The idea is that any rational scientist can be thought of as having 
an initial credence in their theory or hypothesis, which they 
then update in the light of new evidence by following the rule of 
conditionalization. Even if the scientist’s conscious reasoning 
process looks nothing like this, it is a useful idealization 
according to these philosophers.

This ‘Bayesian’ view of scientific inference is quite attractive, as it 
sheds light on certain aspects of the scientific method. Consider 
the fact that when a scientific theory makes a testable prediction 
that turns out to be true, this is usually taken as evidence in favour 
of the theory. In Chapter 1 we had the example of Einstein’s theory 
of general relativity predicting that starlight would be deflected 
by the sun’s gravitational field; when this prediction was confirmed 
it increased scientists’ confidence in Einstein’s theory. But why 
should a successful prediction enhance a scientist’s confidence in a 
theory, given that there will always be other possible explanations 
that can’t be ruled out? Is this simply a brute fact about how 
scientists reason, or does it have a deeper explanation?
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Bayesians argue that it does indeed have a deeper explanation. 
Suppose that a theory T entails a testable statement e. The 
scientist initially has credence P(T) that T is true and P(e) that e is 
true. We assume that both P(T) and P(e) take non-extreme values, 
i.e. are not zero or one. Suppose the scientist then learns that e is 
definitely true. If they follow the rule of conditionalization, their 
new credence in theory T, i.e. Pnew(T), must then be greater than 
P(T) as a matter of logic. In other words, upon learning that their 
theory has made a true prediction, a scientist will necessarily 
increase their confidence in the theory so long as they obey the 
conditionalization rule. So the fact that successful predictions 
typically lead scientists to become more confident of their theories 
has a neat explanation, on the Bayesian view of scientific inference.

However the Bayesian view has its limitations. Much interesting 
scientific inference involves inventing theories or hypotheses that 
have never been thought of before. The great scientific advances 
made by Copernicus, Newton, and Darwin were all of this sort. 
Each of these scientists came up with a new theory which their 
predecessors had never entertained. The reasoning that led them 
to these theories cannot plausibly be regarded as Bayesian. For 
conditionalization describes how a scientist’s rational credence in 
a theory should change when they get new evidence; this 
presumes that the theory has already been thought of. So scientific 
inferences that go from data to completely new theory cannot be 
understood in terms of conditionalization.

Another limitation of the Bayesian view concerns the source of the 
initial credences, prior to updating on the new evidence. In the 
card example, your initial rational credence that the chosen card 
was the queen of hearts was easy to determine, because there are 
fifty-two cards in a deck each with an equal chance of being 
chosen. But many scientific hypotheses are not like this. Consider 
the hypothesis that global warming will exceed four degrees by the 
year 2100. What should a scientist’s initial credence in this 
hypothesis, before getting any relevant evidence, be? There is no 
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obvious answer to this question. Some Bayesian philosophers of 
science reply that initial credences are purely subjective, i.e. they 
simply represent a scientist’s ‘best guess’ about the hypothesis, 
so any initial credence is as good as any other. On this version of 
the Bayesian view, there is an objectively rational way for a 
scientist to change their credences when they get new evidence, 
i.e. conditionalization, but no objective constraint on what their 
initial credences should be.

This intrusion of a subjective dimension is regarded as unwelcome 
by many philosophers, leading them to conclude that the Bayesian 
view cannot be the whole story about scientific inference. Also, 
it shows that there cannot be a Bayesian ‘solution’ to Hume’s 
problem of induction. The idea that we can somehow escape 
Hume’s problem by invoking probability is an old one. Even if the 
sun’s having risen every day in the past doesn’t prove that it will 
rise tomorrow, surely it makes it highly probable? Whether this 
response to Hume ultimately works is a complex matter, but we 
can say the following. If the only objective constraints concern 
how we should change our credences, but what our initial 
credences should be is entirely subjective, then individuals with 
very bizarre opinions about the world will count as perfectly 
rational. So a probabilistic escape from Hume’s problem will not 
fall out of the Bayesian view of scientific inference.
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&KaSter ��Ų:Kat is science"

A good discussion of the scientific revolution is Steven Shapin, The 
Scientific Revolution (University of Chicago Press, 1998). Detailed 
treatment of topics in the history of science can be found in 
J. L. Heilbron (ed.), The Oxford Companion to the History of Modern 
Science (Oxford University Press, 2003). There are many good 
introductions to philosophy of science, including Alexander 
Rosenberg, The Philosophy of Science (Routledge, 2011) and Peter 
Godfrey-Smith, Theory and Reality (University of Chicago Press, 
2003). An excellent collection of papers on general philosophy of 
science, with extensive commentaries by the editors, is Martin Curd, 
J. A. Cover, and Christopher Pincock (eds), Philosophy of Science: The 
Central Issues (W. W. Norton, 2012). Popper’s attempt to demarcate 
science from pseudo-science can be found in his Conjectures and 
Refutations (Routledge, 1963). A good discussion of Popper’s 
demarcation criterion is in Donald Gillies, Philosophy of Science in the 
20th Century (Blackwell, 1993). A good introduction to Popper’s 
philosophy is Stephen Thornton’s article ‘Karl Popper’, in Edward 
N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, <http://plato.
stanford.edu/archives/sum2014/entries/popper/>.

&KaSter ��Ų6cientific inference

A clear discussion of induction and scientific inference is Wesley 
Salmon, The Foundations of Scientific Inference (University of 
Pittsburgh Press, 1967). David Hume’s reflections on induction can be 
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found in Book IV, Section 4 of his Enquiry Concerning Human 
Understanding, ed. L. A. Selby-Bigge (Clarendon Press, 1966). A 
detailed treatment of inference to the best explanation is Peter Lipton, 
Inference to the Best Explanation (Routledge, 2004). The literature on 
causal inference spans philosophy, statistics, and computer science. 
An ambitious work on this topic is Peter Spirtes, Clark Glymour, and 
Richard Scheines, Causation, Prediction and Search (MIT Press, 2001). 
On randomized controlled trials, see John Worrall, ‘Why there is no 
cause to randomize’, British Journal for the Philosophy of Science 
58 (2007), 451–88, and Nancy Cartwright, ‘What are randomized 
controlled trials good for?’, Philosophical Studies 147 (2010), 59–70. 
A good treatment of probability and induction is Ian Hacking, An 
Introduction to Probability and Inductive Logic (Cambridge 
University Press, 2001). The Bayesian approach to scientific inference 
is expounded by Colin Howson and Peter Urbach, Scientific 
Reasoning: The Bayesian Approach (Open Court, 2006).

&KaSter ��Ų([Slanation in science

Hempel’s original presentation of the covering law model is in Aspects 
of Scientific Explanation (Free Press, 1965). A useful account of 
the debate instigated by Hempel’s work is Wesley Salmon, Four 
Decades of Scientific Explanation (University of Minnesota Press, 
1989). A detailed recent treatment of scientific explanation, with 
an extensive bibliography, is James Woodward’s article ‘Scientific 
explanation’, in Edward N. Zalta (ed.), The Stanford Encyclopedia of 
Philosophy (Winter 2014 edition), <http://plato.stanford.edu/
archives/win2014/entries/scientific-explanation/>. The suggestion 
that consciousness can never be explained scientifically is found 
in Colin McGinn, Problems of Consciousness (Blackwell, 1991). The 
idea that multiple realization accounts for the autonomy of the 
higher-level sciences is developed by Jerry Fodor, ‘Special Sciences’, 
Synthese 28 (1974), 97–115. Further discussion of reductionism is 
found in section 8 of Martin Curd, J. A. Cover, and Christopher 
Pincock (eds), Philosophy of Science (W. W. Norton, 2012).

&KaSter ��Ų5ealisP and anti�realisP

A detailed analysis of scientific realism, with an extensive bibliography, 
is Anjan Chakravartty’s article ‘Scientific realism’, in Edward N. Zalta 


