Scientific Method
in Brief

Hugh G. Gauch, Jr.

Cornell University, New York

5% CAMBRIDGE
& ¥ UNIVERSITY PRESS



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107666726

© Hugh G. Gauch, Jr. 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2012
Printed and Bound in the United Kingdom by the MPG Books Group
A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Gauch, Jr., Hugh G., 1942—
Scientific method in brief / Hugh G. Gauch, Jr.
p. cm.
ISBN 978-1-107-66672-6 (pbk.)
1. Science — Methodology. 1. Title.
Q175.G3368 2012
001.4'2 — dc23 2012016520

ISBN 978-1-107-66672-6 Paperback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to
in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.




Inductive logic and statistics

The logic that is so essential for scientific reasoning, being the “L” portion of the
PEL model, is of two basic kinds: deductive and inductive. Chapter 7 reviewed
deductive logic, and Chapter 8 probability, which is a branch of deductive logic.
This chapter reviews inductive logic, with “statistics” being essentially the term
meaning applied inductive logic.

A considerable complication is that statisticians have two competing
paradigms for induction: Bayesian and frequentist statistics. At stake are scien-
tific concerns, seeking efficient extraction of information from data to answer
important questions, and philosophical concerns, involving rational founda-
tions and coherent reasoning.

This chapter cannot possibly do what entire books on statistics do — present a
comprehensive treatment. But it can provide a prolegomenon to clarify the most
basic and pivotal issues, which are precisely the aspects of statistics that scientists
generally comprehend the least. The main objectives are to depict and contrast
the Bayesian and frequentist paradigms and to explain why inductive logic or
statistics often functions well despite imperfect data, imperfect models, and
imperfect scientists. Extremely important research in agriculture, medicine,
engineering, and other fields imposes great responsibilities on statistical
practice.

Historical perspective on induction

This section gives a brief history of induction from Aristotle to John Stuart Mill,
with more recent developments deferred to later sections. Aristotle (384—322 Bc)
had a broad conception of induction. Primarily, induction is reasoning from
particular instances to general conclusions. That is ampliative reasoning from
observed to unobserved, from part to whole, from sample to population. Aris-
totle cautioned against hasty generalizations and noted that a single counter
example suffices to nullify a universal generalization. He carefully distinguished
induction from deduction, analogy, and isolated examples.
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Historical perspective on induction

One of Aristotle’s most influential contributions to the philosophy of science
was his model of scientific logic or reasoning, the inductive—deductive method.
Scientific inquiry alternates inductive and deductive steps. From observations,
induction provides general principles, and with those principles serving as
premises, deduction predicts or explains observed phenomena. Overall, there
is an advance from knowledge of facts to knowledge of an explanation for the
facts.

Epicurus (341-271 Bc) discussed the fundamental role of induction in form-
ing concepts and learning language in his doctrine of “anticipation.” From
repeated sense perceptions, a general idea or image is formed that combines the
salient, common features of the objects, such as the concept of a horse derived
from numerous observations of horses. Once stored in memory, this concept
or anticipation acts as an organizing principle or convention for discriminating
which perceptions or objects are horses and for stating truths about horses.

Robert Grosseteste (c. 1168—1253) affirmed and refined Aristotle’s inductive—
deductive method, which he termed the Method of Resolution and Compo-
sition for its inductive and deductive components, respectively. But he added
to Aristotle’s methods of induction. His purposes were to verify true theories
and to falsify false theories. Causal laws were suspected when certain phenom-
ena were frequently correlated, but natural science sought robust knowledge
of real causes, not accidental correlations. “Grosseteste’s contribution was to
emphasize the importance of falsification in the search for true causes and to
develop the method of verification and falsification into a systematic method of
experimental procedure” (Crombie 1962:84). His approach used deduction to
falsify proposed but defective inductions. As mentioned in the earlier chapter
on deduction, Grosseteste’s Method of Verification deduced consequences of
a theory beyond its original application and then checked those predictions
experimentally. His Method of Falsification eliminated bad theories by deduc-
ing implications known to be false.

Grosseteste clearly understood that his optimistic view of induction required
two metaphysical presuppositions about the nature of physical reality: the uni-
formity of nature and the principle of parsimony or simplicity. Without those
presuppositions, there is no defensible method of induction in particular or
method of science in general.

In essence, at Oxford in 1230, Grosseteste’s new scientific method — with its
experiments, Method of Resolution and Composition, Method of Verification,
Method of Falsification, emphasis on logic and parsimony, and commonsense
presuppositions — was the paradigm for the design and analysis of scientific
experiments. Science’s goal was to provide humans with truth about the physical
world, and induction was a critical component of scientific method.

Roger Bacon (c. 1214-1294) promulgated three prerogatives of experimental
science, as mentioned in Chapter 3. Of those, the first two concerned induction.
His first prerogative was that inductive conclusions should be submitted to
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further testing. That was much like his predecessor Grosseteste’s Method of
Verification. His second prerogative was that experiments could increase the
amount and variety of data used by inductive inferences, thus helping scientists
to discriminate between competing hypotheses.

John Duns Scotus (c. 1265-1308), at Paris, reflected Oxford’s confidence
about inductive logic. He admired Grosseteste’s commentaries on Aristotle’s
Posterior Analytics and Physics but disagreed on some points. Duns Scotus
admitted that, ordinarily, induction could not reach evident and certain knowl-
edge through complete enumeration, and yet he was quite optimistic that
“probable knowledge could be reached by induction from a sample and, more-
over, that the number of instances observed of particular events being correlated
increased the probability of the connexion between them being a truly universal
and causal one. . .. He realized that it was often impossible to get beyond mere
empirical generalizations, but he held that a well-established empirical general-
ization could be held with certainty because of the principle of the uniformity
of nature, which he regarded as a self-evident assumption of inductive science”
(Crombie 1962:168-169).

Building on an earlier proposal by Grosseteste, Duns Scotus offered an induc-
tive procedure called the Method of Agreement. “The procedure is to list the
various circumstances that are present each time the effect occurs, and to look
for some one circumstance that is present in every instance” (Losee 2001:29—
30). For example, if circumstances ABCD, ACE, ABEF, and ADF all gave rise
to the same effect x, then one could conclude that A could be the cause of
x, although Duns Scotus cautiously refrained from the stronger claim that A
must be the cause of x. The Method of Agreement could promote scientific
advances by generating plausible hypotheses that merited further research to
reach a more nearly definitive conclusion.

Henry of Ghent (c. 1217-1293), in contrast to Duns Scotus, believed that
real knowledge had to be about logically necessary things, not the contingent
things of which the physical world is composed. Had his view prevailed, science
in general and induction in particular would now be held in low philosophical
esteem.

William of Ockham (c¢. 1285-1347) further developed inductive logic along
lines begun earlier by Grosseteste and Duns Scotus. He added another induc-
tive procedure, the Method of Difference. “Ockham’s method is to compare two
instances — one instance in which the effect is present, and a second instance
in which the effect is not present” (Losee 2001:30-31). For example, if cir-
cumstances ABC gave effect x, but circumstances AB did not, then one could
conclude that C could be the cause of x. But Ockham was cautious in such
claims, especially because he realized the difficulty in proving that two cases
differed in only one respect. As a helpful, although partial, solution, he recom-
mended comparing a large number of cases to reduce the possibility that an
unrecognized factor could be responsible for the observed effect x.



Historical perspective on induction

Nicholas of Autrecourt (c. 1300-1350) had the most skeptical view of induc-
tion among medieval thinkers, prefiguring the severe challenge that would
come several centuries later from David Hume. “He insisted that it cannot be
established that a correlation which has been observed to hold must continue
to hold in the future” (Losee 2001:37). Indeed, if the uniformity of nature is
questioned in earnest, then induction is in big trouble. Recall that Grosseteste
had recognized that induction depended on the uniformity of nature.

Sir Francis Bacon (1561-1626) so emphasized induction that his concep-
tion of scientific method is often known as Baconian induction. He criticized
Aristotelian induction on three counts: haphazard data collection without sys-
tematic experimentation; hasty generalizations, often later proved false; and
simplistic enumerations, with inadequate attention to negative instances.

Bacon discussed two inductive methods. The old and defective procedure was
the “anticipation of nature,” with “anticipation” reflecting its Epicurean usage,
which led to hasty and frivolous inductions. The new and correct procedure
was the “interpretation of nature.” Inductions or theories that were acceptable
interpretations “must encompass more particulars than those which they were
originally designed to explain and, secondly, some of these new particulars
should be verified,” that is, “theories must be larger and wider than the facts
from which they are drawn” (Urbach 1987:28). Good inductive theories would
have predictive success.

René Descartes (1596—1650) deemed Bacon’s view untenable, so he attempted
to invert Bacon’s scientific method: “But whereas Bacon sought to discover gen-
eral laws by progressive inductive ascent from less general relations, Descartes
sought to begin at the apex and work as far downwards as possible by a deduc-
tive procedure” (Losee 2001:64). Of course, that inverted strategy shifted the
burden to establishing science’s first principles, which had its own challenges.

Sir Isaac Newton (1642—1727) developed an influential view of scientific
method that was directed against Descartes’s attempt to derive physical laws
from metaphysical principles. Rather, Newton insisted on careful observa-
tion and induction, saying that “although the arguing from Experiments
and Observations by Induction be no Demonstration of general Conclu-
sions, yet it is the best way of arguing which the Nature of Things admits
of” (Losee 2001:73). Newton affirmed Aristotle’s inductive—deductive method,
which Newton termed the “Method of Analysis and Synthesis” for its deductive
and inductive components, respectively. “By insisting that scientific procedure
should include both an inductive stage and a deductive stage, Newton affirmed
a position that had been defended by Grosseteste and Roger Bacon in the thir-
teenth century, as well as by Galileo and Francis Bacon at the beginning of the
seventeenth century” (Losee 2001:73).

In Newton’s scientific method, induction was extremely prominent, being
no less than one of his four rules of scientific reasoning: “In experimental phi-
losophy we are to look upon propositions collected by general induction from
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phanomena as accurately or very nearly true, notwithstanding any contrary
hypotheses that may be imagined, till such time as other phanomena occur, by
which they may either be made more accurate, or liable to exceptions” (Williams
and Steffens 1978:286).

John Stuart Mill (1806-1873) wrote a monumental System of Logic that
covered deductive and inductive logic, with a subtitle proclaiming a connected
view of the principles of evidence and the methods of scientific investigation.
Like Francis Bacon, Mill recommended a stepwise inductive ascent from detailed
observations to general theories. He had four (or five) inductive methods for
discovering scientific theories or laws that were essentially the same as those of
Grosseteste, Duns Scotus, and Ockham. Despite his enthusiasm for induction,
Mill recognized that his methods could not work well in cases of multiple causes
working together to produce a given effect. Mill wanted not merely to discover
scientific laws but also to justify and prove them, while carefully distinguishing
real causal connections from merely accidental sequences. But his justification
of induction has not satisfied subsequent philosophers of science.

More recent developments in inductive logic will be discussed later in this
chapter. During the twentieth century, induction picked up a common syn-
onym: statistics. Statistics is inductive logic. The historically recent advent of
statistical methods, digital computers, and enormous databases has stimulated
and facilitated astonishing advances in induction.

Bayesian inference

For a simple example of Bayesian inference about which hypothesis is true,
envision joining an introductory statistics class as they perform an experiment.
The professor shows the class an ordinary fair coin, an opaque urn, and some
marbles identical except for color, being either blue or white. Two volunteers,
students Juan and Beth, are appointed as experimentalists. Juan receives his
instructions and executes the following: He flips the coin without showing it
to anyone else. If the coin toss gives heads, he is to place in the urn one white
marble and three blue marbles. But if the coin toss gives tails, he is to place in the
urn three white marbles and one blue marble. Juan knows the urn’s contents,
but the remainder of the class, including Beth and the professor, know only that
exactly one of two hypotheses is true: either Hp, that the urn contains one white
marble and three blue marbles, or else Hyy, that it contains three white marbles
and one blue marble.

The class is to determine which hypothesis, Hz or Hy, is probably true, by
means of the following experiment: Beth is to mix the marbles, draw one marble,
show its color to the class, and then replace it in the urn. That procedure is to
be repeated as necessary. The stopping rule is to stop when either hypothesis
reaches or exceeds a probability of 0.999. In other words, there is to be at most



Bayesian inference

Marble Experiment: Problem

Setup
Flip a fair coin.
If heads, place in an urn 1 white and 3 blue marbles.
If tails, place in an urn 3 white and 1 blue marbles.

Hypotheses
Hg: 1 white and 3 blue marbles (WBBB).
Hy: 3 white and 1 blue marbles (WWWB).

Purpose
To determine which hypothesis, Hgor H,y, is probably true.

Experiment
Mix the marbles, draw a marble, observe its color, and replace it,
repeating this procedure as necessary.

Stopping Rule
Stop when a hypothesis reaches a posterior probability of 0.999.

Figure 9.1 A marble experiment’s setup, hypotheses, and purpose.

only 1 chance in 1,000 that the conclusion will be false. This marble problem is
summarized in Figure 9.1.

The ratio form of Bayes’s rule is convenient. Here it is recalled, with the
earlier generic hypothesis labels “1” and “2” replaced by more informative
labels, namely, “B” meaning mostly blue marbles (one white and three blue)
and “W” meaning mostly white marbles (three white and one blue).

P(Hp|E) _ P(E|Hp) y P(Hjp)
P(Hw|E)  P(E|Hw) P(Hw)

(9.1)

Table 9.1 gives the data from an actual experiment with blue and white
marbles and analyzes the data using this equation. From the coin toss, the prior
odds for Hp:Hyy are 1:1, so the prior probability P(Hg) = 0.5, and this is also
the posterior probability P(Hp | E) = 0.5 before the experiment has generated
any evidence.

The likelihood odds P(E | Hg):P(E| Hyy) arising from each possible empirical
outcome of drawing a blue or a white marble are as follows. Recalling that Hp
has three of four marbles blue, but Hyy has only one of four marbles blue, a blue
draw is three times as probable given Hp as it is given Hyy. Because P(blue | Hg) =
3/4 =0.75 and P(blue | Hy) = 1/4 = 0.25, a blue draw contributes likelihood
odds of 0.75:0.25 or 3:1 for Hp:Hyy, favoring Hg. By similar reasoning, a white
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Table 9.1 Bayesian analysis for an actual marble
experiment, assuming prior odds for Hg:Hy, of 1:1.
The experiment concludes upon reaching a
posterior probability of 0.999.

Posterior Posterior

Draw Outcome Hg:Hy, P(Hg | E)
(Prior) 1:1 0.500000

1 White 1:3 0.250000
2 Blue 1:1 0.500000
3 White 1:3 0.250000
4 Blue 1:1 0.500000
5 Blue 3:1 0.750000
6 Blue 9:1 0.900000
7 Blue 27:1 0.964286
8 Blue 81:1 0.987805
9 Blue 243:1 0.995902
10 White 81:1 0.987805
11 Blue 243:1 0.995902
12 White 81:1 0.987805
13 Blue 243:1 0.995902
14 Blue 729:1 0.998630
15 Blue 2187:1 0.999543

draw contributes likelihood odds of 1:3 against Hp. Furthermore, because each
draw is an independent event after remixing the marbles, individual trials
combine multiplicatively in an overall experiment. For example, two blue draws
will generate likelihood odds in favor of Hp of 3:1 times 3:1, which equals 9:1.
Thus, in a sequential experiment, each blue draw will increase the posterior
odds for Hp:Hyy by 3:1, whereas each white draw will decrease it by 1:3.

Applying this analysis to the data in Table 9.1, note that the first draw is a
white marble, contributing likelihood odds of 1:3 against Hg. Multiplying those
likelihood odds of 1:3 by the previous odds (the prior) of 1:1 gives posterior
odds of 1:3, decreasing the posterior probability to P(Hp | E) = 0.25, where
the evidence at this point reflects one draw. In this sequential experiment, the
posterior results after the first draw become the prior results at the start of the
second draw. The second draw happens to be blue, contributing likelihood odds
of 3:1 favoring Hp, thereby bringing the posterior probability P(Hp | E) back to
the initial value of 0.5.

Moving on to the sixth draw, the previous odds are 3:1, and the current
blue draw contributes likelihood odds of 3:1, resulting in posterior odds of
9:1 favoring Hp and hence a posterior probability of P(Hg | E) = 0.9. Finally,
after 15 draws, the posterior probability happens to exceed the stopping rule’s
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preselected value of 0.999, so the experiment stops, and hypothesis Hp is
accepted with more than 99.9% probability of truth. Incidentally, in this partic-
ular instance of an actual marble experiment, the conclusion was indeed correct
because the urn actually did contain three blue marbles and one white marble,
as could have been demonstrated easily by some different experiment, such as
drawing out all four marbles at once.

Table 9.1 illustrates an important feature of data analysis: results become
more conclusive as an experiment becomes larger. During the first six draws,
Hp has two wins, two losses, and two ties, so the results are quite inconclusive,
and the better-supported hypothesis never reaches a probability beyond 0.9.
Indeed, at only one draw and again at three draws, this experiment gives mild
support to the false hypothesis! But draws 5 to 15 all give the win to Hg, which
is actually true, finally with a probability greater than 0.999.

This particular experiment reached its verdict after 15 draws, but how long
would such experiments be on average? A simple approximation, regardless
whether Hp or Hyy is true, is that on average each four draws give three draws
that support the true hypothesis and one draw that supports the false hypothesis.
Hence, on average, for four draws, two draws cancel out and two support the
true hypothesis. Let M denote the margin of blue draws over white draws. Then,
the posterior odds Hp:Hyy equal 3M:1, which exceed 999:1 or 99.9% confidence
favoring Hz when M = 7, or exceed 1:999 favoring Hyy when M = —7. Because
half the data cancel and half count, the length L required for a margin of £7
averages about 2 x 7 = 14 draws. Hence, the particular experiment in Table
9.1, having 15 draws, is about average.

For M equal to 2, 3, 4, or 5, a more exact calculation gives the average length
Las 3.2,5.6, 7.8, or 9.9 draws, but thereafter the approximation that L &~ 2M is
quite accurate. For instance, if only 1 chance of error in 1,000,000 were to be
tolerated, that would require a margin of 13 because 3'° = 1,594,323 and hence
an average length of about 26 draws. Because the weight of this experimental
evidence grows exponentially with its amount, an exceedingly high probability
of truth is readily attainable.

Furthermore, this exponential increase in the weight of the evidence confers
robustness to this Bayesian analysis were this experiment to encounter various
problems and complications that can plague real-world experiments. Problems
can be disastrous but not necessarily so because weighty evidence can sur-
mount considerable difficulties. Four substantial but surmountable problems
are described here: controversial background information, messy data, wrong
hypotheses, and different statistical methods.

Controversial Background Information. The foremost objection to
Bayesian inference has been that frequently the background information that
determines the prior probabilities is inadequate or even controversial. This
perceived deficiency prompted the development of an alternative statistical
paradigm, frequentist statistics, which will be described in the next section.
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Recalling the mouse experiment in the previous chapter, which is analogous
to the marble experiment in this chapter, Fisher judged that “the method of
Bayes could properly be applied” because the pedigree information for these
mice supplied “cogent knowledge” of the prior probabilities (Fisher 1973:8).
On the other hand, “if knowledge of the origin of the mouse tested were lacking,
no experimenter would feel he had warrant for arguing as if he knew that of
which in fact he was ignorant, and for lack of adequate data” to determine the
prior probabilities “Bayes’ method of reasoning would be inapplicable” (Fisher
1973:20). Fisher’s tale of the black and brown mice was a moral tale that waxed
sermonic in its conclusion that “It is evidently easier for the practitioner of
natural science to recognize the difference between knowing and not knowing
than this seems to be for the more abstract mathematician,” that is, for the
Bayesian statistician (Fisher 1973:20).

For the present marble experiment, the prior probabilities P(Hg) and P(Hy)
are known precisely because of the setup information about a coin toss. But
what happens if no background information is given, so the prior probabilities
are unknown and potentially controversial?

A particularly unfavorable case results from assigning a small prior proba-
bility to what is actually the true hypothesis, such as P(Hp) = 0.1 when Hj is
true. Prior odds for Hz:Hyy of 1:9 require an additional likelihood odds of 9:1 to
move the odds back to the 1:1 starting point of the original setup, which entails
an average of about four draws. Hence, this unfavorable prior increases the
original average length of the experiment from 14 to 14 + 4 = 18 draws. Like-
wise, were the prior odds extremely challenging, such as P(Hg) = 0.001 when
Hp is true, the experimental effort increases to about 28 draws. Consequently,
prior probabilities that are unfavorable to the truth result in more work, but
the truth is still attainable.

A Bayesian statistician has essentially two alternatives for dealing with inad-
equate prior information. One alternative is to supply a noninformative prior,
namely, P(Hg) = P(Hy) = 0.5, and also show what range of prior probabilities
still leaves the conclusion unaltered, given the data at hand. If the data are
strong, the conclusion may be robust despite a vague prior. The other alterna-
tive is to report the Bayes factor P(E | Hp) / P(E | Hy) instead of the posterior
probabilities because this avoids prior probabilities altogether. Either way, in
the favorable case that the weight of the evidence grows exponentially with
its amount, exceptionally strong evidence can be attainable that provides for a
reliable and convincing conclusion.

Messy Data. In the original experimental procedure, the student, Beth, faith-
fully showed the class the marble resulting from each draw, ensuring quality
data. But what happens if instead a weary and fickle Beth works alone and
observes the drawn marble’s color accurately only half of the time, whereas she
reports blue or white at random the other half of the time? Can these messy
data still decide between Hg and Hyy with confidence?
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The original margin between blue and white draws of seven draws allows
the probability of a false conclusion to climb to 0.027 with the messy data. To
maintain the specified 0.001 probability of error or 0.999 probability of truth,
now the required margin increases to 14 and the average length of the experi-
ment increases to about 56 draws. Hence, in this case, increased data quantity
can compensate for decreased data quality. Of course, more pathological cases
would be disastrous, such as unrecognized problems causing serious bias in
the data. Frequently, scientific experiments are rather messy but not downright
pathological, so the remedy of more data works.

Wrong Hypotheses. Certainly, one of the deepest problems that a scientific
inquiry can possibly encounter is that the truth is not even among the hypotheses
under consideration. For instance, consider this marble experiment with its
setup specifying the hypotheses Hg with one white and three blue marbles, or
else Hy with three white and one blue marbles. But what happens if by mistake
or by mischief the experimentalist, Juan, puts two white and two blue marbles
in the urn? Now the true hypothesis, Hr denoting equal numbers of both colors,
is not even under consideration.

When Hp is true but only Hg and Hyy are considered, on average, the exper-
iment will require 49 draws until a margin of 7 draws declares Hp or else Hy,
true. But such a long experiment is suspicious, given that a length around 14
draws is expected. The length of the experiment has a wide variability around
its average of 49 draws, with 70 or more draws occurring 22% of the time, which
is extremely suspicious. But, on the other hand, only 20 or fewer draws occur
23% of the time, which would not be alarming. However, if the experiment
were repeated several times, most likely the results would be weird: some unbe-
lievably long experiments, contradictory conclusions favoring Hp about half of
the time and Hyy the other half, and frequencies for both blue and white draws
near 0.5 for the pooled data. An unsuspected problem may escape detection
after just one run but probably not after three or four runs, and almost certainly
not after 10 or 20 runs.

The data are likely, at least eventually, to embarrass a faulty paradigm and
thereby precipitate a paradigm shift. Even rather severe mistakes can be reme-
diable. Scientific discovery is like a hike in the woods: you can go the wrong way
for a while and yet still arrive at your destination at the end of the day.

Different Statistical Methods. Sometimes various scientists working on a
given project adopt or prefer different statistical methods for various reasons,
including debates between advocates of the Bayesian and frequentist approaches
to statistics. How do statistical debates affect science? Can scientists get the same
answers even if they apply different statistical methods to the data?

The short answer is that small experiments generating few data can leave
scientists from different statistical schools with different conclusions about
which hypothesis is most likely to be true. Rather frequently, scientists have only
rather limited data, so the choice of a first-rate, efficient statistical procedure is
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important. However, as more data become available, the influence of differences
in statistical methods diminishes. Eventually, everyone will come to the same
conclusion, even though they differ in terms of the particular calculations used
and the exact confidence attributed to the unanimous conclusion.

Many additional challenges could be encountered beyond these four prob-
lems. For instance, closer hypotheses would be harder to discriminate between
than Hp and Hy having widely separated probabilities of 0.75 and 0.25 for
drawing a blue marble. The new hypotheses H; with three white and five blue
marbles and H, with five white and three blue marbles give closer probabilities
of 0.625 and 0.375. Now the average length of the experiments is about 56 draws
to maintain the 0.999 probability of a true conclusion. Hence, data quantity can
compensate for yet another potential challenge.

In conclusion, numerous problems can be overcome by the simple expedient
of collecting more data, assuming that this option is not too expensive or
difficult. This favorable outcome is especially likely when the weight of the
evidence increases exponentially with the amount of the evidence.

Frequentist inference

Historically, the Bayesian paradigm preceded the frequentist paradigm by about
a century and a half, so the latter was formulated in reaction to perceived
problems with its predecessor. Principally, the frequentist paradigm sought
to eliminate the Bayesian prior because it burdened scientists with the search
for additional information that often was unavailable, diffuse, inaccurate, or
controversial. Frequentists such as Sir Ronald A. Fisher, Jerzy Neyman, and
Egon S. Pearson wanted to give scientists a paradigm with greater objectivity.

Frequentist statistics designates one hypothesis among those under consid-
eration as the null hypothesis. Ordinarily, the null hypothesis is that there is no
effect of the various treatments, whereas one or more alternative hypotheses
express various possible treatment effects. A null hypothesis is either true or
false, and a statistical test either accepts or rejects the null hypothesis, so there
are four possibilities. A Type I error event is to reject a true null hypothesis,
whereas a Type II error event is to accept a false null hypothesis.

The basic idea of frequentist hypothesis testing is that a statistical procedure
with few Types I and II errors provides reliable learning from experiments.
Typelerrors can be avoided altogether merely by accepting every null hypothesis
regardless of what the data show, and Type II errors can be avoided by rejecting
every null. Hence, there is an inherent trade-off between Types I and II errors,
so some compromise must be struck.

The ideal way to establish this compromise is to evaluate the cost or penalty
for Type I errors and the cost for Type II errors and then balance those errors
so as to minimize the overall expected cost of errors of both kinds. In routine
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True False
Accept 91 2 93
Reject 4 3 7
95 5 100

Figure 9.2 Hypothetical example of error events and rates. A null hypothesis is either true
or false, and a test, involving experimental data and a statistical inference, is used to
accept or reject the null hypothesis, so there are four possible outcomes, with counts as
shown. Also shown are row totals, column totals, and the grand total of 100 tests. To
reject a true null hypothesis is a false-positive error event, whereas to accept a false null
hypothesis is a false-negative error event.

practice, however, scientists tend to set the Type I error rate at some convenient
level and not to be aware of the accompanying Type II error rate, let alone the
implied overall or average cost of errors.

Figure 9.2 provides a concrete example. Such numbers could represent the
results when a diagnostic test accepts or rejects a null hypothesis of no disease
and, subsequently, a definitive test determines for sure whether the null is true
or false.

Understand that an error event and an error rate are two different things.
To reject a true null hypothesis is a Type I error event, and there are four such
events. To accept a false null hypothesis is a Type II error event, and there are
two such events. The Type I error rate « is P(reject | true) = 4/95 ~ 0.0421 and
the Type II error rate B is P(accept | false) = 2/5 = 0.4. Note that the Type I
error rate is 4/95, not 4/7 and not 4/100.

Another important quantity for frequentists is the p-value, defined as the
probability of getting an outcome at least as extreme as the actual observed
outcome under the assumption that the null hypothesis is true. To calculate the
p-value, one envisions repeating the experiment an infinite number of times and
finds the probability of getting an outcome as extreme as or more extreme than
the actual experimental outcome under the assumption that the null hypothesis
is true. The smaller the p-value, the more strongly a frequentist test rejects the
null hypothesis. It has become the convention in the scientific community to
call rejection at a p-value of 0.05 a “significant” result and rejection at the 0.01
level a “highly significant” result.

To illustrate the calculation of a p-value, Table 9.2 analyzes the marble exper-
iment from a frequentist perspective that was previously analyzed in Table 9.1
from a Bayesian perspective. Let the null hypothesis be Hyy, that the urn contains
three white marbles and one blue marble, and let the alternative hypothesis be
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Table 9.2 Frequentist analysis for an actual marble
experiment, assuming that the null hypothesis Hy, is true and
the experiment stops at 15 draws. At an experimental
outcome of 11 blue draws (and 4 white draws), which is
marked by an asterisk and is the same outcome as in
Table 9.1, the conclusion is to reject Hy at the highly
significant p-value of 0.000115.

Blue Draws Probability p-value
0 0.01336346101016 1.00000000000000
1 0.06681730505079 0.98663653898984
2 0.15590704511851 0.91981923393905
3 0.22519906517118 0.76391218882054
4 0.22519906517118 0.53871312364936
5 0.16514598112553 0.31351405847818
6 0.09174776729196 0.14836807735264
7 0.03932047169656 0.05662031006068
8 0.01310682389885 0.01729983836412
9 0.00339806545526 0.00419301446527
10 0.00067961309105 0.00079494901001
11 0.00010297168046 0.00011533591896 *
12 0.00001144129783 0.00001236423850
13 0.00000088009983 0.00000092294067
14 0.00000004190952 0.00000004284084
15 0.00000000093132 0.00000000093132

Hp, that it contains one white and three blue marbles. (In this case, neither
hypothesis corresponds to the idea of no treatment effect, so Hy has been cho-
sen arbitrarily to be the null hypothesis, but the story would be the same had
Hp been designated the null hypothesis instead.)

Table 9.2 has three columns of numbers. The first column lists, for an exper-
iment with 15 draws, the 16 possible outcomes, namely, 0 to 15 blue draws
(and, correspondingly, 15 to 0 white draws). This analysis takes Hyy as the null
hypothesis, and under this assumption that the urn contains three white mar-
bles and one blue marble, the probability of a blue draw is 0.25. So experiments
with 15 draws will average 15 x 0.25 = 3.75 blue draws. Accordingly, were
this experiment repeated many times, outcomes of about 3 or 4 blue draws
would be expected to be rather frequent, whereas 14 or 15 blue draws would
be quite rare. To upgrade this obvious intuition with an exact calculation using
the probability theory explained in the preceding chapter, an outcome of b
blue draws and w white draws from a total of n = b + w draws can occur
with n! / (b! x w!) permutations, and the probability of each such outcome is
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0.25% x 0.75". For example, the probability of 5 blue and 10 white draws is
[15! / (5! x 10")] x 0.25° x 0.75!% ~ 0.165146.

These probabilities, for all possible outcomes from b values of 0 to 15, are
listed in the second column of Table 9.2. Finally, the third column is the p-value,
obtained for b blue draws by summing the probabilities for all outcomes with
b or more blue draws. For example, the p-value for 0 blue draws is 1, because it
is the sum of all 16 of these probabilities, whereas the p-value for 14 blue draws
is the sum of the last two probabilities. For the particular marble experiment
considered here, the actual outcome was 11 blue draws, and an asterisk draws
attention to the corresponding p-value of 0.000115. The conclusion, based on
this extremely small p-value, is to reject Hyy as a highly significant result.

Unlike Bayesian analysis, which requires specification of prior probabilities
in order to do the calculations, the frequentist analysis requires no such input,
and thereby it seems admirably objective. So even if we know nothing about the
process whereby the urn receives either the one white and three blue marbles
or the reverse, we can still carry on unhindered with this wonderfully objective
analysis! Or, so it seems.

Most persons who have read this section thus far probably have not sensed
anything ambiguous or misleading in this frequentist analysis. It all seems so
sensible. Besides, this statistical paradigm has dominated in scientific research
for the previous several decades, so it hardly seems suspect. Nevertheless, there
are some serious difficulties.

One problem is that, frequently, the error rate of primary concern to scientists
is something other than the Type I or Type II error rates. The False Discovery
Rate (FDR) is defined as the probability of the null hypothesis being true given
that it is rejected, P(true | reject), which equals 4/7 ~ 0.5714 for the example in
Figure 9.2. It has the meaning here of the probability that a diagnosis of disease
is actually false. Unfortunately, scientists often use the familiar Type I error
rate P(reject | true) when their applications actually concern the FDR, which is
the reverse conditional probability P(true | reject), which always has a different
meaning and usually has a different value.

A worrisome feature of p-values is the strange influence accorded to the rule
specifying when an experiment stops, which must be specified because every
experiment must stop. The implicit stopping rule needed to make Table 9.2 com-
parable with Table 9.1 is that the experiment stops at 15 draws. But other stop-
ping rules could result in exactly these same data, such as stop at 11 blue draws
or stop at 4 white draws. However, these three rules differ in the imaginary out-
comes that would result as the frequentist envisions numerous repetitions of the
experiment. Consequently, exactly the same data can generate different p-values
by assuming different stopping rules. For instance, Berger and Berry (1988) cited
a disturbing example in which frequentist analyses of a single experiment gave
p-values of 0.021, 0.049, 0.085, and any other value up to 1 just by assuming
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different stopping rules. So a p-value depends on the experimental data and
the stopping rule. Consequently, it depends on the actual experiment that did
occur andan infinite number of other imaginary experiments that did not occur.
Different stopping rules are generating different stories about just what those
other imaginary experiments are, thereby changing p-values. But such reason-
ing seems bizarre and problematic, opening the door to unlimited subjectivity,
quite in contradiction to the frequentists’ grand quest for objectivity.

Another problem with p-values is that they usually overestimate, but can also
underestimate, the strength of the evidence because they are strongly affected by
the sample size. Raftery (1995) explained that Fisher’s choice of Type I error rates
a of 0.05 and 0.01 for significant and highly significant results were developed
in the context of agricultural experiments with typical sample sizes in the range
of 30 to 200, but these choices are misleading for sample sizes well outside
this range. Contemporary experiments in the physical, biological, and social
sciences often have sample sizes exceeding 10,000, for which the conventional
a = 0.05 will declare nearly all tests significant. For instance, from Raftery’s
Table 9, @ = 0.053 for a “significant” result with 50 samples corresponds to o« =
0.0007 with 100,000 samples, which is drastically different by a factor of almost
100. Unfortunately, many scientists are unaware of the adjustments in « that
need to be made for sample size. Because of these problems with p-values, their
use is declining, particularly in medical journals.

Bayesian methods have a tremendous advantage of computational ease over
frequentist methods for models fitting thousands of parameters, which are
becoming increasingly common in contemporary science. Also, some theorems
(called complete class theorems) prove that even if one’s objective is to optimize
frequentist criteria, Bayesian procedures are often ideal for that (Robert 2007).

For introductory exposition of frequentist statistics, see Cox and Hinkley
(1980); for Bayesian statistics, see Gelman et al. (2004) or Hoff (2009). For
more technical presentations of Bayesian statistics, see the seminal text by
Berger (1985) and the more recent text by Robert (2007).

Bayesian decision

The distinction between inference and decision is that inference problems pur-
sue true beliefs, whereas decision problems pursue good actions. Clearly, infer-
ence and decision problems are interconnected because beliefs inform decisions
and influence actions. Accordingly, decision problems incorporate inference
sub-problems.

Many decisions are too simple or unimportant to warrant formal analysis,
but some decisions are difficult and important. Formal decision analysis pro-
vides a logical framework that makes an individual’s reasoning explicit, divides
a complex problem into manageable components, eliminates inconsistencies in
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a person’s reasoning, clarifies the options, facilitates clear communication with
others also involved in a decision, and promotes orderly and creative problem-
solving. Sometimes life requires easy and quick decisions but at other times it
demands difficult and careful decisions. Accordingly, formal decision methods
are supplements to, not replacements for, informal methods. On the one hand,
even modest study of formal decision theory can illuminate and refine ordi-
nary informal decisions. On the other hand, simple common-sense decision
procedures provide the only possible ultimate source and rational defense for a
formal theory’s foundations and axioms.

The basic structure of a decision problem is as follows. Decision theory
partitions the components or causes of a situation into two fundamentally
different groups on the basis of whether or not we have the power to control a
given component or cause. What we can control is termed the “action” or choice.
Obviously, to have a choice, there must exist at least two possible actions at our
disposal. What we cannot control is termed the “state” or, to use a longer phrase,
the state of nature. Each state-and-action combination is termed an “outcome,”
and each outcome is assigned a “utility” or “consequence” that assesses the
value or benefit or goodness of that outcome, allowing negative values for loss
or badness, and assigning zero for indifference. These possible consequences
can be written in a consequences matrix, a two-way table with columns labeled
with states and rows labeled with actions. There is also information on the
probabilities of the states occurring, resulting from an inference sub-problem
with its prior probabilities and likelihood information. If the state of nature
were known or could be predicted with certainty, determining the best decision
would be considerably easier; having only probabilistic information about the
present or future state causes some complexity, uncertainty, and risk. Finally,
the information on consequences and probabilities of states is combined in
a decision criterion that assigns values to each choice and indicates the best
action.

Figure 9.3 presents a simple example of a farmer’s cropping decision. There
are three possible states of nature, which are outside the farmer’s control: good,
fair, or bad weather. There are three possible actions among which the farmer
can choose: plant crop A, plant crop B, or lease the land.

Beginning at the lower left portion of Figure 9.3, we know something about
the probabilities of the weather states. We possess old and new data on the
weather, summarized in the priors and likelihoods. For example, the old data
could be long-run frequencies based on extensive historical climate records,
indicating prior probabilities of 0.30, 0.50, and 0.20 for good, fair, and bad
weather. The new data could be a recent long-range weather forecast that
happens to favor good weather, giving likelihoods of 0.60, 0.30, and 0.10 for
good, fair, and bad weather. Bayesian inference then combines the priors and
likelihoods to derive the posterior probabilities of the weather states, as shown
near the middle of the figure. Multiplying each prior by its corresponding
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The Structure of a Decision Problem

C
onse.qlt{ences Decision Criterion:
(Utilities) Maximize Expected
States Utility
Actions Good  Fair Bad Expect Decision
—>
Crop A 100 10 =20 541
Crop B 80 40 0 58.0 < Best
Lease 30 30 30 30.0

Probabilities of States

Posterior 0.51 0.43 0.06

T

Old and New Data on States

Prior 0.30 050 0.20
Likelihood 0.60 0.30 0.10

Figure 9.3 A decision problem about which crop to plant, which concludes that crop B is
the best choice.

likelihood gives values of 0.18, 0.15, and 0.02, for a total of 0.35, and division
of those three values by their total yields the posterior probabilities, namely,
approximately 0.51, 0.43, and 0.06 for good, fair, and bad weather. So far, this
is a standard inference problem. But a decision problem is more complicated,
with two additional components, as explained next.

The upper left portion of Figure 9.3 shows the matrix of consequences or
utilities. The outcome for any given growing season is specified by its particular
state-and-action combination. The three possible states are good, fair, and bad
weather, and the three possible actions are to plant crop A, plant crop B, or lease
the land, for a total of 3 x 3 = 9 possible outcomes. The consequences matrix
shows the utility or value of each possible outcome, using a positive number
for a utility or gain, a negative number for a loss, or a zero for indifference. For
example, in a given year, the outcome might be fair weather for crop B, which
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has a utility of 40, where this number represents profit in dollars per acre or
whatever.

Finally, the upper right portion of Figure 9.3 specifies a decision criterion,
which is to maximize the expected utility. The expected utility is the average or
predicted utility, calculated for each possible action by multiplying the utility
for each state by its corresponding probability and summing over the states.
For example, the expected utility for crop A is (100 x 0.51) 4+ (10 x 0.43) +
(—20 x 0.06) ~ 54.1. Likewise, the expected utility for crop B is 58.0 and that for
leasing is 30.0. The largest of these three values is 58.0, indicating that planting
crop B is the best decision to maximize the expected utility.

This example illustrates a frequent feature of decision problems: different
penalties for different errors can cause the best decision to differ from the best
inference. Bayesian inference gives the greatest posterior probability of 0.51
to good weather, and good weather favors the choice of crop A. But Bayesian
decision instead chooses crop B, with its largest expected utility of 58.0, primarily
because fair weather is rather likely and would involve a tremendous reduction
in crop A’s utility.

Both probability and statistics require only the three Kolmogorov probability
axioms (and the inherited predicate logic and arithmetic axioms), but decision
theory requires the addition of one more axiom, such as the axiom of desirability
of Jeffrey (1983:80-81). In essence, it says that the utility or desirability of an
action equals the average of the utilities for its various outcomes weighted by
their probabilities, as was done in Figure 9.3.

Because of different attitudes toward risk, decision criteria other than max-
imized expected utility may be appropriate and preferable. For example, one
might prefer to minimize the worst possible utility, which in this case would
favor leasing the land (because the worst possible utility from leasing would
be 30, whereas crop A could be as bad as —20, and crop B as bad as 0). Some-
times the response to the expected utility is nonlinear, such as a strong response
to utilities below some minimum needed for survival, but a mild response
to differences among utilities that merely distinguish various levels of luxury.
Furthermore, decisions can be evaluated in terms of not only their average but
also their variability around that average, with large variability implying much
uncertainty and risk. Sometimes a relatively minor compromise in the average
can gain a substantial reduction in the variability, which is the basis for the
insurance industry.

Decisions may have several criteria to be optimized simultaneously, probably
with some complicated trade-offs and compromises. For example, a farmer
might want to optimize income, as in Figure 9.3, but also want to rotate crops
to avoid an epidemic buildup of pest populations and want to diversify crops to
stagger the workload during busy seasons. Those other constraints might result
in a decision, say, to plant 60% crop B and 40% crop A, which would reduce
the expected utility slightly to (0.6 x 58.0) 4+ (0.4 x 54.1) ~ 56.4.
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Although decision problems are more complex than inference problems, in
practice, they often are easier than inference problems because the necessity to
take some action can allow even small probability differences to force sensible
decisions. For example, other things being equal, even a slightly higher proba-
bility that a particular medicine is effective or a particular airplane is safe will
suffice to generate strong preferences. So odds of merely 60:40 can force practi-
cal decisions. Because most probability reasoning is motivated by the practical
need to make good decisions, not merely by theoretical interests, even rather
weak data and small probability differences can still significantly inform and
influence decisions.

Induction lost and regained

This chapter’s account of inductive logic has been, on the whole, rather confi-
dent and cheerful. However, a tremendous philosophical battle has raged over
induction from ancient Greek skeptics to the present, with David Hume’s cri-
tique being especially well known. Without doubt, inductive logic has suffered
more numerous and drastic criticisms than all of the other components of
scientific reasoning combined. Dozens of books, mostly by philosophers, have
been written on the so-called problem of induction.

Unfortunately, the verdict of history seems to be that “the salient fea-
ture of attempts to solve Hume’s problem is that they have all failed”
(Friedman 1990:28). Broad’s oft-quoted aphorism says that induction is “the
glory of science and the scandal of philosophy” (Broad 1952:143), and White-
head (1925:25) called induction “the despair of philosophy.” Howson (2000:14—
15, 2) concluded that “Hume’s argument is one of the most robust, if not the
most robust, in the history of philosophy,” and it simply is “actually correct.”

Hume’s critique of induction appeared in his anonymous, three-volume A
Treatise of Human Nature, which was a commercial failure and drew heavy
criticism from his fellow Scottish philosophers Thomas Reid and James Beattie.
Subsequently, his admirably brief An Enquiry Concerning Human Understanding
reformulated his critique, and that punchy book was a great success. Because
Hume’s advertisement in the latter work dismisses the former as a juvenile work,
the discussion here follows the usual custom of examining just the Enquiry.

Hume’s argument in Chapters 4 and 5 of his Enquiry has three key premises
followed by the conclusion: (1) Any verdict on the legitimacy of induction
must result from deductive or inductive arguments, because those are the only
kinds of reasoning. (2) A verdict on induction cannot be reached deductively. No
inference from the observed to the unobserved is deductive, specifically because
nothing in deductive logic can ensure that the course of nature will not change.
(3) A verdict cannot be reached inductively. Any appeal to the past successes
of inductive logic, such as that bread has continued to be nutritious and that
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the sun has continued to rise day after day, is but worthless circular reasoning
when applied to induction’s future fortunes. Therefore, because deduction
and induction are the only options, and because neither can reach a verdict
on induction, the conclusion follows that there is no rational justification for
induction. Incidentally, whereas the second premise, that of no deductive link
from the past to the future, had been well known since antiquity, the third
premise, that of no (legitimate and noncircular) inductive link from the past to
the future, was Hume’s original and shocking innovation.

Induction suffered a second serious blow in the mid 1950s, two centuries after
Hume, when Goodman (1955) propounded his “new riddle” of induction. “The
new riddle of induction has become a well-known topic in contemporary ana-
lytic philosophy. . .. There are now something like twenty different approaches
to the problem, or kinds of solutions, in the literature. ... None of them has
become the majority opinion, received answer, or textbook solution to the
problem” (Douglas Stalker, in Stalker 1994:2).

Briefly, Goodman’s argument ran as follows. Consider emeralds examined
before time f, and suppose that all of them have been green (where ¢t might be,
say, tomorrow). The most simple and foundational inductive procedure, called
the straight rule of induction, says that if a certain property has been found for a
given proportion of many observed objects, then the same proportion applies
to all similar unobserved objects as well as to individual unobserved objects.
For example, if numerous rolls of a die have given an outcome of 2 with a
frequency of nearly 1/6, then inductive logic leads us to the conclusion that
the frequency of that outcome in all other rolls will also be 1/6, and likewise
that the probability of any particular future roll giving that outcome will be
1/6. Similarly, those observations before time t of many emeralds that are all
green support the inductive conclusion that all emeralds are green, as well as
the prediction that if an emerald is examined after time ¢, it too will be green.

Then Goodman introduced a new property, “grue,” with the definition that
anobjectis grueifitis examined before time tand is green, or if it is not examined
before time ¢ and is blue. Admittedly, this is a rather contrived property, and
the philosophical discussion of grue is quite technical and rather perplexing.
But the main point is that Goodman showed that only some properties are
appropriate (projectable) for applications of the straight rule of induction,
but others are not. So how can one decide in a nonarbitrary manner which
properties are projectable? Apart from clear criteria to discern when the straight
rule is applicable, there is a danger that it will be used when inappropriate,
thereby “proving” too much, even including contradictory conclusions.

All too predictably, Hume had complained that all received systems of phi-
losophy were defective and impotent for justifying even the simple straight
rule of induction. Goodman’s complaint, however, was the exact opposite. His
concern was not that induction proves too little but rather that it proves too
much: a method that can prove anything proves nothing. Understand that
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Goodman, like his predecessor Hume, was not intending to wean us from
common sense, such as causing us to worry that all of our emeralds would
turn from green to blue tomorrow. Rather, he was deploying the new riddle to
wake us to the challenge of producing a philosophically respectable account of
induction.

Finally, and perhaps most important, the great generality of those old and new
problems of induction must be appreciated. Hume and Goodman expressed
their arguments in terms of time: past and future, or before and after time .
But thoughtful commentators have discerned their broader scope. Gustason
(1994:205) assimilated Hume’s argument to a choice among various standard
and nonstandard inductive logics. Accordingly, the resulting scope encompasses
any and all inductive arguments, including those concerning exclusively past
outcomes.

Howson (2000:30-32) followed Goodman in interpreting Goodman’s argu-
ment as a demonstration that substantial prior knowledge about the world
enters into our (generally sensible) choices about when to apply induction and
how much data to require. Couvalis (1997:48) has cleverly said it all with a
singularly apt example: “Having seen a large number of platypuses in zoos and
none outside zoos, we do not infer that all platypuses live in zoos. However,
having seen a small number of platypuses laying eggs, we might infer that all
platypuses lay eggs.” Similarly, Howson (2000:6, 197) observed that scientists
are disposed to draw a sweeping generalization about the electrical conductivity
of copper from measuring current flow in a few samples. But, obviously, many
other scientific generalizations require enormous sample sizes.

Responding first to Hume’s critique of induction, the role of common sense
is critical. Hume said that we need not fear that doubts about induction “should
ever undermine the reasonings of common life” because “Nature will always
maintain her rights, and prevail in the end over any abstract reasoning whatso-
ever,” and “Custom. . . is the great guide of human life” (Beauchamp 1999:120,
122). Hume’s conclusion is not that induction is shaky but rather that induction
is grounded in custom or habit or instinct, which we share with animals, rather
than in philosophical reasoning. But Hume’s argument depends on a controver-
sial assumption that common sense is located outside philosophy rather than
being an integral part and foundation of philosophy.

Indeed, when philosophy’s roots in common sense are not honored, a char-
acteristic pathology ensues: instead of natural philosophy happily installing
science’s presuppositions once, at the outset, by faith in a trifling trinket of
common-sense knowledge, a death struggle with skepticism gets repeated over
and over again for each component of scientific method, including induc-
tion. The proper task, “to explain induction,” swells to the impossible task, “to
defeat skepticism and explain induction.” If Hume’s philosophy cannot speak in
induction’s favor, that is because it is a truncated version of philosophy that has
exiled animal habit rather than having accommodated our incarnate human
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nature as an integral component of philosophy’s common-sense starting points,
as Reid had recommended.

Plainly, all of the action in Hume’s attack on induction derives ultimately
from the concern that the course of nature might change, but that is simply
the entrance of skepticism. His own examples include such drastic matters as
whether or not the sun will continue to rise daily and bread will continue to
be nutritious. Such matters are nothing less than philosophy’s ancient death
fight with skepticism! They are nothing less than the end of the world! In the
apocalypse proposed by those examples, not only does induction hang in the
balance but also planetary orbits and biological life. As Himsworth (1986:87—
88) observed in his critique of Hume, if the course of nature did change, we
would not be here to complain! So as long as we are here or we are talking about
induction, deep worries about induction are unwarranted. Consequently, seeing
thatapocalypse as “the problem of induction” rather than “the end of the world”
is like naming a play for an incidental character. The rhetoric trades in obsessive
attention to one detail.

Turning next to Goodman’s new riddle of induction, it shows that although
the straight rule of induction is itself quite simple, judging whether or not to
apply it to a given property for a given sample is rather complicated. These
judgments, as in the example of platypuses, draw on general knowledge of
the world and common sense. Such broad and diffuse knowledge resists tidy
philosophical analysis.

summary

Induction reasons from actual data to an inferred model, whereas deduction
reasons from a given model to expected data. Both are important for sci-
ence, composing the logic or “L” portion of the PEL model. Probability is the
deductive science of uncertainty, whereas statistics is the inductive science of
uncertainty.

Aristotle, medieval philosopher-scientists, and modern scholars have devel-
oped various inductive methods. But not until the publication in 1763 of Bayes’s
theorem was the problem finally solved of relating conditional probabilities of
the form P(E | H), the probability of evidence E given hypothesis H, found in
deduction with reverse conditional probabilities of the form P(H | E) required
in induction. Bayes’s theorem was illustrated with a simple example regarding
blue and white marbles drawn from an urn. Inductive conclusions can be robust
despite considerable difficulties with controversial background information,
messy data, wrong hypotheses, and different statistical methods. Particularly
when the weight of the evidence grows exponentially with the amount of the
evidence, increased data quantity can often compensate for decreased data qual-
ity. However, the need to specify prior probabilities, which can be unknown
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or even controversial, prompted the development of an alternative paradigm
intended to be more applicable and objective.

Frequentist inference, which is a competitor to Bayesian inference, was illus-
trated with the same marble experiment. Frequentist methods seek to minimize
Type I errors, rejecting a true null hypothesis, and Type II errors, accepting a
false null hypothesis, but this is challenging because of the inevitable trade-
off between these two kinds of errors. Statistical significance is assessed by
p-values that express the probability of getting an outcome as extreme, or more
extreme, than the actual experimental outcome under the assumption that the
null hypothesis is true. But sometimes error rates other than the Type I and
Type Il error rates are more relevant, particularly the False Discovery Rate. And
p-values have been criticized because their strange dependence on stopping
rules and imaginary outcomes undermines the presumed pursuit of objectiv-
ity and because their actual significance depends strongly on the number of
samples.

Bayesian decision theory was illustrated with a simple example of a farmer’s
cropping decision. Whereas inference problems pursue true beliefs, decision
problems pursue good actions. Decision theory requires one more axiom
beyond those already needed for probability and statistics, an axiom of desir-
ability saying in essence that the utility or desirability of an action equals the
average of the utilities for its various outcomes weighted by their probabilities.

Inductive logic has received far more philosophical criticism than all of
the other components of scientific method combined. David Hume argued
that philosophy cannot justify any inductive procedures, including the simple
straight rule of induction. More recently, Goodman’s new riddle of induction
showed the exact opposite, that the straight rule of induction can be used
to prove anything — which is equally problematic. But given common-sense
presuppositions, induction can be defended and implemented effectively.

Study questions

(1) Recall that the vertical bar in a conditional probability is read as “given,” so
P(A | B) means the probability of A given B. Let H denote a hypothesis and
E denote some evidence. How do P(H | E) and P(E | H) differ in meaning
and in numerical value? How are they related by Bayes’s theorem? How do
they pertain to scientists’ main research questions?

(2) Listseveral kinds of problems that sometimes plague scientific experiments.
How can inductive logic or statistics reach reliable and robust conclusions
despite such problems?

(3) Define and compare Type I, Type II, and False Discovery Rate (FDR)
error rates. Suppose that your research has two steps: an inexpensive initial
screening for numerous promising candidates, followed by a very expensive



(4)

(5)

Study questions

final test for promising candidates. Which kind of error rate would be most
relevant for the initial screening and why?

Does either the Bayesian or frequentist paradigm have a legitimate claim
overall to greater objectivity and, if so, for exactly what reasons? What is
the relative importance of statistical paradigm and evidential strength in
achieving objectivity?

Describe Hume and Goodman’s riddles of induction. What are your own
responses to these riddles? Do they undermine induction or not? What role
do common-sense presuppositions play in a defense of induction?
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