
Introduction to R
Methods of Scientific Working (for Crop Sciences) (3502-440)

21 Jan 2025

Table of contents

1 RStudio: Your work environment 2
2 Working directory 3
3 Libraries 3
4 R as calculator - Part 1 4
5 Workspace 4
6 R Style guide 5
7 Vectors 7
8 Working with vectors 7
9 Functions 9
10 R as calculator - Part 2 10
11 Vectors 12
12 Matrices 13
13 Data frames 14
14 Lists 16
15 More advanced plotting 18
16 Basic linear regression models 19
17 Characters 22
18 Dates 22
19 Conditional execution of commands 23
20 Repeated execution of commands 24
21 Writing your own functions 26
22 OPTIONAL: Vector-oriented programming 27
23 Data creation 27
24 Extracting data 28
25 Information on variables 28
26 Plotting 28
27 Plotting parameters 28
28 Statistics 29
29 Data processing 29
30 Fitting 29
31 Programming 29
32 Keyboard shortcuts 30
33 Error messages 30

The goal of this course is a short introduction into the R statistical package. R is a very powerful
environment for data analysis, and also a programming language. It is mainly used for the
reproducible analysis of data and use only a minimal set of programming instructions.

Beginners may be overwhelmed by the perceived complexity of the R package. With experience,
however, this feeling will go away rapidly because the underlying principles in design and usage are
easy to learn and understand.

1

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 2

The key advantage of using a package like R over statistical analysis programs that are based on
graphical user interfaces (GUIs) is the possibility to write scripts and other types of text files that
simultaneously serve as notebooks and therefore greatly contribute to the repeatability and
reproducibility of the analyses.

R is an open source software. It is both a programming language and a computing environment for
statistical analyses. It can be downloaded from http://www.R-project.org.

Several GUIs and editors are available for R. We will use the development environment Rstudio (free
software, available at www.rstudio.org). Both R and Rstudio are available for Linux, Windows and
MAC OS.

This tutorial is based on several sources:

• Original writing by members of the research group Crop Biodiversity and Breeding Informatics
(in particular, Fabian Freund and Karl Schmid)

• http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

If you are very interested in learning R, there are excellent online materials. For example:

• https://swcarpentry.github.io/r-novice-gapminder/
• https://evolutionarygenetics.github.io/

1 RStudio: Your work environment

RStudio is a Graphical User Interface (GUI) for you to develop your R codes. RStudio has several
useful features to assist your programming, such as auto-completion of unfinished codes and
highlighting code blocks. Please note that you have to install both R and RStudio because RStudio is
just an environment for editing your codes and it runs your codes by calling R in the background.

1.1 RStudio on your own computer

After you downloaded RStudio you ca open the program. The RStudio interface consists of several
windows.

• Bottom left: console window (also called command window). Here you can type commands
after the “>” prompt and R will then execute your command. This is the most important
window, because this is where R actually does stuff.

• Top left: editor window (also called script window). Collections of commands (scripts) can be
edited and saved. When you don’t get this window, you can open it with File→ New→ R script
Just typing a command in the editor window is not enough, it has to get into the console
window before R executes the command. If you want to run a line from the script window (or
the whole script), you can click Run or press CTRL+ENTER to send it to the console window.

• Top right: workspace / history window. In the workspace window you can see which data and
values R has in its memory. You can view and edit the values by clicking on them. The history
window shows what has been typed before.

• Bottom right: files / plots / packages / help /viewer window. Here you can open files, view
plots (also previous plots), install and load packages or use the help function.

You can change the size of the windows by dragging the grey bars between the windows.

http://www.R-project.org
www.rstudio.org
http://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 3

1.2 RStudio Cloud

RStudio Cloud (https://rstudio.cloud/) is a cloud-based version of RStudio that allows you to run your
analysis online. You can easily sign up with your Google account or with any Email box for free.

The interface of RStudio Cloud is as same as your local RStudio.

1.3 R command line in RStudio

In Rstudio, we can either use the normal command line input for R or write scripts in the editor and
run these in R. We will focus on the command line input.

Some important basic commands are:

#| eval: false

q() # quit R

?command_name # call manual for a command; try q()

getwd() # show the current working directory

setwd("directory_name") # set a working directory

2 Working directory

Your working directory is the folder on your computer in which you are currently working. When you
ask R to open a certain file, it will look in the working directory for this file, and when you tell R to
save a data file or figure, it will save it in the working directory. Before you start working, please set
your working directory to where all your data and script files are or should be stored.

The working directory can also be set in Rstudio by clicking on Session -> Set working

directory -> Choose directory. The working directory is important since it is the directory
where all output of R will be written to.

Note that everything written after an # is not evaluated by R - we will use this for commenting.

Tip: If R reports an error message: Error in file(file, "rt") : cannot open the

connection ... No such file or directory when trying to read data, it means you give an
incorrect directory. You have to check the typing error(s) in your codes.

3 Libraries

R can do many statistical and data analyses. They are organized in so-called packages or libraries.
With the standard installation, most common packages are installed. To get a list of all installed
packages, go to the packages window or type library() in the console window. If the box in front
of the package name is ticked, the package is loaded (activated) and can be used.

There are many more packages available on the R website. If you want to install and use a package
(for example, the package called “geometry”) you should:

• Install the package: click install packages in the packages window and type geometry or type
install.packages("geometry") in the console window.

• Load the package: check box in front of geometry or type library("geometry") in the
console window.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 4

Tip: An important thing to keep in mind is that R packages are not always available with
install.packages() . The default of install.packages() searches packages on the CRAN
repository. However, in some cases, R packages may be archived on bioconductor, Github or other
repositories. So, if R returns an warning message of package is not available when installing a
package, try to search for a correct source for your installation.

Tip: Please note that you have to reload R packages with library() whenever you start a new R
session.

First examples of R commands

4 R as calculator - Part 1

R can be used as a calculator. You can just type your equation in the command window after the >
prompt:

> 10ˆ2 + 36

and R will give the answer

[1] 136

4.1 Exercise

Compute the difference between 2022 and the year you started at this university and
divide this by the difference between 2022 and the year you were born. Multiply this
with 100 to get the percentage of your life you have spent at this university. Use
brackets if you need them.

Note: If you use brackets and forget to add the closing bracket, the > on the command line changes
into a +. The + can also mean that R is still busy with some heavy computation. If you want R to quit
what it was doing and give back the >, press ESC (see the reference list on the last page).

5 Workspace

You can also give numbers a name. By doing so, they become so-called variables which can be used
later. For example, you can type in the command window:

> a <- 4

You can see that a appears in the workspace window, which means that R now remembers what a is.
You can also ask R what a is (just type a ENTER in the command window):

> a

[1] 4

or do calculations with a:

https://www.bioconductor.org/

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 5

> a * 5

[1] 20

If you specify a again, it will forget what value it had before. You can also assign a new value to a
using the old one.

> a <- a + 10

> a

[1] 14

To remove all variables from R’s memory, type

> rm(list=ls())

or click clear all in the workspace window. You can see that RStudio then empties the workspace
window. If you only want to remove the variable a, you can type rm(a).

The workspace can be saved permanently after a session and reloaded to use objects defined in an
earlier session. The workspace can be saved in Rstudio using the menu in the upper right corner. If
you terminate R, you will always be asked whether the workspace should be saved (it is saved in the
working directory).

5.1 Exercise

Repeat the previous exercise, but with several steps in between. You can give the
variables any name you want, but the name has to start with a letter.

Scalars, vectors and matrices

Like other programs, R organizes numbers in

• scalars (a single number - 0-dimensional),
• vectors (a row of numbers, - 1-dimensional)
• matrices (like a table - 2-dimensional).

The a you defined before was a scalar. To define a vector with the numbers 3, 4 and 5, you need the
function c, which is short for concatenate (paste together).

b <- c(3,4,5)

Matrices and other 2-dimensional structures will be introduced below.

6 R Style guide

You may wonder whether it is better to write rm(list=ls()) or rm(list = ls()), or to write b <-

c(3,4,5) or b <- c(3, 4, 5). All of these variants work and their use is a matter of taste.

Simple rule can be applied to decide on the writing:

• As long as you write for yourself, decide on what you like
• But be consistent throughout your code, it makes reading easier

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 6

• If you write for others. Follow a generally accepted style guide. A widely used style guide for R
is here: https://style.tidyverse.org/

The assignment operator

Historically, R used <- as an assignment operator, but = can be used as well because it does the
same thing. <- consists of two characters, < and -, and represents an arrow pointing at the object
receiving the value of the expression. In this introduction, we use <- as assignment operator.

Objects, values and classes

When using R, your data, functions, results etc. are stored in the active memory of the PC in the form
of objects of different classes to which you assign names.

Here is a summary of basic classes:

• integer: numbers that can be written without a decimal component
• numeric (or double): any number; can be positive or negative
• character: any text, including symbols and numbers (numbers of character class CANNOT
be used in calculation)

• logical: value of TRUE or FALSE

The data of basic classes are building blocks of your objects:

Object Class

vector numeric, integer, character, logical
factor numeric, integer, character
array numeric, integer, character, logical
matrix numeric, integer, character, logical
data frame numeric, integer, character, logical
list numeric, character, logical, function, expression. . .

Note: factor is the text with categorical information (so it CAN be used in statistical models)

First let us focus on numerical objects. To create numerical objects we need to write our result to a
variable. A variable is an object to which we have given a name and assign a value.

Here is an example:

x <- 1

y <- 2

z <- 10

Peter <- x + y

Bernard <- y - x

Rabbit <- z * Peter

Now we can display the values of these variables simply by typing their name.

x

etc.

Vectors and functions

Often, we will not only deal with single objects, but with several objects at once. For example,
various measurements may have been taken from the same plant. All measurements combined in
one variable are a vector (an ordered set) of entries.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 7

7 Vectors

For example, the vector (1,2,3,4) can be defined by

v1 <- c(1,2,3,4)

A vector consists of objects of the same class and that by using c() on vectors, you can
concatenate vectors. Try using the command str instead of mode to get further information about
an object.

v2 <- c("a", 1, 2, 3)

mode(v2)

str(v2)

v3 <- c(v1, v1, v1)

v3

Instead of typing all entries by hand, vectors consisting of copies of the same element or of
equidistant values can be defined by the following commands:

rep(4, 6) # The first argument gives the object to repeat,

the second argument the number of repetitions

seq(2, 4, 0.5) # Consists of values with distance 0.5 from 2 to 4 (including 2 and 4)

1:7 # A vector consisting of 1,...,7

seq(along = v2) # Vector (1,...,length(v2))

Note that length(v1) gives the length of the vector v1.

7.1 Exercise

Construct a vector of length 300 consisting of 50 copies of 1,2,3,4,5,6.

8 Working with vectors

Let v1 be a vector with numerical entries, for example

v1 <- 1:5

mode(v1)

A certain entry, say the𝑖th entry of v1 can be accessed by v1[i]. Note that you can also access a
sub vector by specifying all of the entries you want to access.

v1[1] # The first entry of the vector`

v1[c(1, 2)] # The first two entries of the vector`

v1[-c(1, 2)] # All entries of the vector apart from the first two`

v1[v1<3] # All entries smaller than 3`

Question: What kind of an object is v1<3?

In the last example, we introduced a vector consisting of objects of class logical. Let’s look at it:

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 8

```{r, results='show'}

v1 < 3

```

Such operations (a vector, a comparison operator and a object the vector is compared to) produces
a vector giving the result of the comparison for each vector entry.

Here is a list of logical comparison operators:

• ==, !=: equal, unequal
• >, >=: greater, greater or equal
• <, <=: smaller, smaller or equal
• &, |: and, or (to combine logical expressions, each expression has to be put into ())
• !(logical condition): negation of a logical condition

logicv1 <- (v1 > 1) & (v1 < 4)

v1[logicv1]

So far, accessing entries of a vector resulted in the output of the accessed entries, discarding the
information at which position of the original vector the entries are placed. This information can be
retrieved by which.

v4 <- -7:3 # Defines v4 as the vector (-7, -6, ..., 1, 2, 3). Note the blank!

which(v4 > 0) # Gives the positions of all entries of v4 bigger than

8.1 Exercise

In the previous exercise, you constructed a vector of length 300 consisting of 50 copies
of 1,2,3,4,5,6. How would you extract the values between 2 and 5 from this vector?

Note that to get the position of a minimal or maximal entry of a numerical vector v1, you can use
which.min(v1) and which.max(v1) (if there are several entries tied for minimum or maximum, the
entry with lowest position is shown). To overwrite entries in a vector, you just have to assign a new
value to the entry:

v1[1] <- 100

v1[1]

v1

Here’s a list of some useful functions for a numerical vector v:

• max(v), min(v): Gives the maximal/minimal value of a vector
• sum(v): Sums the entries of v
• mean(v): arithmetic mean of v
• sort(v): sort entries of v in increasing order. To sort in decreasing order, add the second

argument decreasing=TRUE

For a logical vector v, the following commands might be useful:

• any(v): Is at least one entry of v TRUE?
• all(v): Are all entries of v TRUE?

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 9

9 Functions

If you would like to compute the mean of all the elements in the vector b from the example above,
you could type

> (3 + 4 + 5) / 3

But when the vector is very long, this is very boring and time-consuming work. This is why things you
do often are automated in so-called functions. Some functions are standard in R or in one of the
packages. You can also program your own functions. When you use a function to compute a mean,
you will type:

> mean(x = b)

Within the brackets you specify the arguments. Arguments give extra information to the function. In
this case, the argument x says of which set of numbers (vector) the mean should computed (namely
of b?). Sometimes, the name of the argument is not necessary: mean(b) works as well.

9.1 Exercise

Compute the sum of 4, 5, 8 and 11 by first combining them into a vector and then using
the function sum.

The function rnorm, as another example, is a standard R function which creates random samples
from a normal distribution. Hit the ENTER key and you will see 10 random numbers as:

> rnorm(10)

[1] -0.949 1.342 -0.474 0.403

[5] -0.091 -0.379 1.015 0.740

[9] -0.639 0.950

• Line 1 contains the command: rnorm is the function and the 10 is an argument specifying how
many random numbers you want - in this case 10 numbers (typing n=10 instead of just 10
would also work).

• Lines 2-4 contain the results: 10 random numbers organised in a vector with length 10.

Entering the same command again produces 10 new random numbers. Instead of typing the same
text again, you can also press the upward arrow key to access previous commands. If you want 10
random numbers out of normal distribution with mean 1.2 and standard deviation 3.4 you can type

> rnorm(10, mean = 1.2, sd = 3.4)

showing that the same function (rnorm) may have different interfaces and that R has so called
named arguments (in this case mean and sd). By the way, the spaces around the “,” and “=” do not
matter, but the use of spaces is frequently recommended to improve the readbility of the code.

Comparing this example to the previous one also shows that for the function rnorm only the first
argument (the number 10) is compulsory, and that R gives default values to the other so-called
optional arguments.

Tip: RStudio has a nice feature: when you type rnorm(in the command window and press TAB,
RStudio will show the possible arguments.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 10

10 R as calculator - Part 2

The R console can be used as pocket calculator and basic arithmetic calculations +, -, * and / are
easy to carry out. Many more complex mathematical operations are available, for example:

• ˆ : power
• sqrt(x) : square root of x
• log(x), exp(x) : natural logarithm and exponential function of x, respectively
• sin(x), cos(x), tan(x) : trigonometric functions of x
• abs(x) : absolute value |x| of x

Other object classes

So far, we have used one type of object classes, numeric. Four other important object classes are
character, logical, integer and function.

The class character consists of objects that are strings of symbols (e.g. words but also something
like A?7Fd).

The class logical is reserved for the logical expressions TRUE and FALSE. Such objects are often
useful in programming.

integer is a class which only allows integer-valued entries.

NA is the class reserved for missing values. NA is not really an object class, but gets it class
information from what object class the value is missing from. If no such information is available, NA
is treated as logical.

word <- "hello"

word2 <- "A?7Fd"

mv <- NA

Bool <- TRUE

To display a class of an object one can use a function like mode()

mode(x)

mode(sin)

mode(word)

mode(Peter)

Plots

R can make graphs. This is a very simple example:

x <- rnorm(100)

plot(x)

• In the first line, 100 random numbers are assigned to the variable x, which becomes a vector
by this operation.

• In the second line, all these values are plotted in the plots window.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 11

10.1 Exercise

Plot 100 normal random numbers.

Help and documentation

There is a large amount of free documentation and help available. Some help is automatically
installed. Typing in the console window the command

help(rnorm)

gives help on the rnorm function. It gives a description of the function, possible arguments and the
values that are used as default for optional arguments. Typing

example(rnorm)

gives some examples of how the function can be used. An HTML-based global help can be called
with:

help.start()

or by going to the help window.

The following links can also be useful:

• https://cran.r-project.org/doc/manuals/R-intro.pdf – A full manual.
• http://cran.r-project.org/doc/contrib/Short-refcard.pdf – A short reference card.
• www.statmethods.net – Also called Quick-R. Gives very productive direct help. Also for users

coming from other programming languages.
• mathesaurus.sourceforge.net – Dictionary for programming languages (e.g. R for Matlab

users).
• Just using Google (type e.g. “R rnorm” in the search field) can also be very productive.

10.2 Exercise

Find help for the sqrt function.

Scripts

R is an interpreter that uses a command line based environment. This means that you have to type
commands, rather than use the mouse and menus. This has the advantage that you do not always
have to retype all commands and are less likely to get complaints of arms, neck and shoulders.

You can store your commands in files, the so-called scripts. These scripts have typically file names
with the extension .R, e.g. foo.R. You can open an editor window to edit these files by clicking File

and New or Open file..., where also the options Save and ‘Save as are available.

You can run (send to the console window) part of the code by selecting lines and pressing
CTRL+ENTER or click Run in the editor window. If you do not select anything, R will run the line your
cursor is on. You can always run the whole script with the console command source, so e.g. for the
script in the file foo.R you type:

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 12

source("foo.R")

You can also click Run all in the editor window or type CTRL+SHIFT+S to run the whole script at
once.

10.3 Exercise

Make a file called firstscript.R containing R-code that generates 100 random
numbers and plots them, and run this script several times.

Note: You can add comments to the script explaining what the code does. Type these comments
behind a # sign, so is not evaluated as code by R.

Data structures

If you are unfamiliar with R, it makes sense to just retype the commands listed in this section.
Maybe you will not need all these structures in the beginning, but it is always good to have at least a
first glimpse of the terminology and possible applications.

11 Vectors

Vectors were already introduced, but they can do more:

> vec1 <- c(1, 4, 6, 8, 10)

> vec1

[1] 1 4 6 8 10

> vec1[5]

[1] 10

> vec1[3] <- 12

> vec1

[1] 1 4 12 8 10

> vec2 <- seq(from = 0, to = 1, by = 0.25)

> vec2

[1] 0.00 0.25 0.50 0.75 1.00

> sum(vec1)

[1] 35

> vec1 + vec2

[1] 1.00 4.25 12.50 8.75 11.00

• In line 1, a vector vec1 is explicitly constructed by the concatenation function c(), which was
introduced before. Elements in vectors can be addressed by standard [i] indexing, as shown
in lines 4-5.

• In line 6, one of the elements is replaced with a new number. The result is shown in line 8.
• Line 9 demonstrates another useful way of constructing a vector: the seq() (sequence)

function.
• Lines 10-15 show some typical vector oriented calculations. If you add two vectors of the

same length, the first elements of both vectors are summed, and the second elements, etc.,
leading to a new vector of length 5 (just like in regular vector calculus). Note that the function
sum sums up the elements within a vector, leading to one number (a scalar).

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 13

12 Matrices

Matrices are nothing more than 2-dimensional vectors. To define a matrix, use the function matrix:

> mat <- matrix(data = c(9,2,3,4,5,6), ncol = 3)

> mat

[,1] [,2] [,3]

[1,] 9 3 5

[2,] 2 4 6

The argument data specifies which numbers should be in the matrix. Use either ncol to specify the
number of columns or nrow to specify the number of rows.

More formally defined, a matrix is a rectangular scheme of 𝑛 ⋅ 𝑚 values, where 𝑛 is the number of
rows and 𝑚 is the number of columns. A matrix can be defined by listing all entries in a vector,
specifying the number of rows and stating whether the entries are ordered by rows or columns. The
𝑛 × 𝑛 identity matrix can be defined by diag(n).

matrix1 <- matrix(c(1, 2, 3, 4), nrow = 2, byrow = TRUE) # Ordered by rows

matrix2 <- matrix(c(1, 2, 3, 4), nrow = 2, byrow = FALSE) # Ordered by columns

D <- diag(2)

Note that since the first argument of matrix is a vector, you can use the commands written down in
the chapter about vectors to easily built matrices with specific patterns in their entries. To access an
entry of a matrix, you have to specify its row and column. As in the case of vectors, you can also
access several entries at once.

matrix1[1,2] # Accesses the entry in the 1st row, 2nd column

matrix1[,1] # Accesses the first column

matrix1[1,] # Accesses the first

There are many operations available to manipulate matrices. The following list shows some
important commands for matrices:

v3 <- c(1, 1) # Defines a 2-dimensional vector

t(matrix1) # Transposes matrix1 (switches rows with columns)

matrix1 %*% matrix2 # Multiplies matrix1 with matrix 2

matrix1 %*% v3 # Multiplies matrix with vector

eigen(matrix1) # Computes eigenvalues and eigenvectors

solve(matrix1) # Inverts the matrix

solve(matrix1, v3) # Solves the system of linear equation matrix1*x=v3

cbind(matrix1, v3) # Adds v3 as a new column (works also adding matrices)

rbind(matrix1, v3) # Adds v3 as a new row (works also adding matrices)

An expansion of the concept of matrix for more than two dimensions is array.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 14

12.1 Exercise

Put the numbers 31 to 60 in a vector named P and in a matrix with 6 rows and 5
columns named Q. Tip: use the function seq. Look at the different ways scalars, vectors
and matrices are denoted in the workspace window.

Matrix operations are similar to vector operations:

> mat[1,2]

[1] 3

> mat[2,]

[1] 2 4 6

> mean(mat)

[1] 4.8333

• Elements of a matrix can be addressed in the usual way: [row,column] (line 1).
• Line 3: When you want to select a whole row, you leave the spot for the column number empty
(the other way around for columns of course).

• Line 5 shows that many functions also work with matrices as argument.

13 Data frames

Time series are often ordered in data frames. A data frame is a matrix with names above the
columns. This is nice, because you can call and use one of the columns without knowing in which
position it is.

> t <- data.frame(x = c(11,12,14), y = c(19,20,21), z = c(10,9,7))

> t

x y z

1 11 19 10

2 12 20 9

3 14 21 7

> mean(t$z)

[1] 8.666667

> mean(t[["z"]])

[1] 8.666667

• In lines 1-2 a typical data frame called t is constructed. Its columns have the names x, y and z.
• Line 8-11 show two ways of how you can select the column called z from the data frame

called t.

Normally, we will deal with data collected from different individuals. This data can be seen as a
scheme with rows and columns (similar to a matrix), where the rows stand for the individuals and
the columns stand for each measured variable or some information about experimental factors.
Note here that in contrast to a matrix, the columns may have any object as entry (but the type of
object is equal for all rows/individuals). This type of data structure is called a data frame in R. It can
be defined by the command data.frame as follows:

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 15

data1 <- data.frame(height = c(3, 4, 5, 3),

earlength = c(5, 5, 4, 2),

treatment = c("c", "a", "a", "b"))

Note that the third column is referred to as a factor

str(data1)

If we compare defining a data frame to defining a matrix, we see that we enter each column as a
separate vector and we can name the columns (similar naming is possible for matrices and vectors).
Non-numerical values are mostly experimental conditions in a data frame and will be treated as
factors. To access entries, there are two possibilities: We can do as with matrices or directly
address the columns.

data1[1, 2] # Accesses the entry in the 1st row, second column

data1$earlength[1] # Does the same

data1$earlength # The column earlength

data1[[1]] # The first column

The benefit of using the column names is that you don’t have to memorize the exact structure of the
data frame, but just the column names (thus, use reasonable column names). For programming
though, it’s often easier to address the columns by number and not by name. If you are about to
work with one data frame a lot, you can use attach() to add the data frame to the search path of R.
This means that R knows that if you type in a column name, it’s from said data frame. You can
detach by using detach()

#| eval: false

data1$height

height # Doesn't work

attach(data1)

height # Works now

data1$height

detach(data1)

We know how to access different columns of a data frame. However, we will often be interested to
work with a subset of data, for example only data from individuals/rows under a certain
experimental condition (e.g., a certain factor level of an experimental factor). Such subsets of data
can be accessed by subset.

subset(data1, treatment == "a") # Chooses all rows with treatment a

data_sub <- subset(data1, treatment %in% c("a", "b")) # Chooses all rows with treatment a or b

str(data_sub)

table(data_sub$treatment) # Unused factor levels are kept by subset

data_sub2 <- droplevels(data_sub$treatment) # Kicks out unused factor levels

table(data_sub2)

subset(data1, treatment == "a", select = height) # Shows the height values for all individuals \# with treatment a

As with matrices, rbind and cbind can be used to glue data sets together. A more flexible command
is merge (which we don’t cover here), to learn about it type ?merge. A similar, but more flexible class
for such lists is list. All defined objects are displayed in a list in the upper right corner in Rstudio.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 16

13.1 Exercise

Make a script file which constructs three random normal vectors of length 100. Call
these vectors x1, x2 and x3. Make a data frame called t with three columns (called a, b
and c) containing respectively x1, x1+x2 and x1+x2+x3. Call plot(t) for this data
frame. Can you understand the results? Re-run this script a few times.

14 Lists

Another basic structure in R is a list. The main advantage of lists is that the “columns” (they’re not
really ordered in columns any more, but are more a collection of vectors) don’t have to be of the
same length, unlike matrices and data frames.

> L <- list(one = 1, two = c(1,2), five=seq(0, 1, length = 5))

> L

$one

[1] 1

$two

[1] 1 2

$five

[1] 0.00 0.25 0.50 0.75 1.00

> names(L)

[1] "one" "two" "five"

> L$five + 10

[1] 10.00 10.25 10.50 10.75 11.00

• Lines 1-2 construct a list with names and values. The list also appears in the workspace
window.

• Lines 3-9 show a typical printing (after pressing L ENTER).
• Line 10 illustrates how to find out what is in the list.
• Line 12 shows how to use the numbers.

Functions

To understand computations in R, two slogans are helpful:

• Everything that exists is an object.
• Everything that happens is a function call.

v2 <- c("a", 1, 2, 3)

str(v2)

So if we go back to this example from before we now know that v2 is an object. str() on the other
hand is a function that provides us with some information on v2.

How to make a function?

All R functions have three parts:

• the body, the code inside the function.
• the formals, the list of arguments which controls how you can call the function.
• the environment, the map of the location of the functions variables.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 17

Here we will focus on the first two components.

To define a new function, we have to specify the arguments of the function, a function name and the
function itself. For example, we can define the function that calculates 2*b + 2 by:

a <- function(b) {

2 * b + 2

}

formals(a)

body(a)

mode(a) # shows the mode of a

a(4) # computes the value of the function a for an input number 4

A function may have more than one argument, and the arguments don’t necessarily have to be
objects of the class numeric. For example R can also plot mathematical functions by using the
function curve. curve has many possible arguments. Type ?curve to get an overview. Note that
some arguments have a predefined default value, meaning that if you don’t specify a value for such
an argument, the default value is used. For starters, we will focus on the arguments:

• expr: The function which to plot
• from: Lower bound of the 𝑥-coordinate of the plot
• to: Upper bound of the 𝑥-coordinate of the plot
• xlab: Label of the 𝑥-axis, can either be written in text (“text”) or as a mathematical expression
(using expression())

• ylab: Label of the 𝑦-axis, , can either be written in text (“text”) or as a mathematical
expression (using expression())

Here’s the command to let R plot the function sin2x from −2𝜋 to 2𝜋 (with labelled axes).

#| eval: false

sin2x <- function(x) {

sin(2**x)

}

curve(sin2x, from = -2 * pi, to = 2 * pi, xlab = "x ",

ylab = expression(sin(2 * x)))

Note that R doesn’t keep track of objects defined in a function unless you force it to return their
values. By default, just the last evaluated expression is returned (as seen). Using return at the end
of your function, you can specify the return values. Here’s an example:

testf <- function(x) {y <- 2*x; x+y}

testf(2) # returns only the value of the function, y is not returned

testf <- function(x) {y <- 2*x; z <- x+y; return(c(y, z))}

testf(2) # y and z are returned

14.1 Exercises:

A) Plot a function x*x or xˆ2 (both will of course give the same result) for x from
-100 to 100.

B) Write a function that computes the mean of all negative and the mean of all
positive values of a vector.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 18

C) Consider an very big (infinite) population of diploid individuals. A locus with
alleles 𝐴1 and 𝐴2 is in Hardy-Weinberg equilibrium if the genotype frequencies are

Genotype 𝐴1𝐴1 𝐴1𝐴2 𝐴2𝐴2

Frequency 𝑝2 2𝑝𝑞 𝑞2

where 𝑝 is the frequency of 𝐴1 and 𝑞 = 1 − 𝑝 is the frequency of 𝐴2.

Create a 𝑅 script and write a function HWfreq that returns the genotype frequencies if
you use the 𝐴1 allele frequency 𝑝.

Graphics

One of the main strengths of R comes from its strong graphical possibilities. Here we will just learn
the basics of the plotting functions while it is encouraged to look into various online plotting
tutorials if you want to learn more:

• https://www.statmethods.net/graphs/

The following lines show a simple plot

plot(rnorm(100), type = "l", col = "gold")

Hundred random numbers are plotted by connecting the points by lines (the symbol between quotes
after the type=, is the letter l, not the number 1) in gold.

Another very simple example is the classical histogram plot, generated by the simple command

hist(rnorm(100))

The following few lines create a plot using the data frame t constructed in the previous exercise:

plot(t$a, type = "l", ylim = range(t), lwd = 3, col = rgb(1, 0, 0, 0.3))

lines(t$b, type="s", lwd=2, col = rgb(0.3, 0.4, 0.3, 0.9))

points(t$c, pch = 20, cex = 4, col = rgb(0, 0, 1, 0.3))

Note that with plot you get a new plot window while points and lines add to the previous plot.

Add these lines to the script file of the previous section. Try to find out, either by experimenting or by
using the help, what the meaning is of rgb, the last argument of rgb, lwd, pch, cex.

To learn more about formatting plots, search for par in the R help. Google “R color chart” for a pdf
file with a wealth of color options.

To copy your plot to a document, go to the plots window, click the “Export” button, choose the nicest
width and height and click Copy or Save.

15 More advanced plotting

https://www.statmethods.net/graphs/index.html

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 19

#| eval: false

data(iris) # loading a plant dataset already existing in R

class(iris) # lets see what type of data this is

summary(iris) # summary of the dataset

plot(iris$Sepal.Length,iris$Sepal.Width) # plots the length and width of the plants

?plot # shows us all the options we can use with the plot function

plot(iris$Petal.Length, iris$Petal.Width, pch=21,

bg=c("red","green3","blue")[unclass(iris$Species)],

main="Iris_Data",

xlab="Petal_length",ylab="Petal_Width")

16 Basic linear regression models

To fit a linear model to a data set, we just have to specify the linear model we want to use and then
plot the data using the plot() function.

#| eval: false

x <- c(1,2,3,4,5)

y <- c(1.6,4,6.5,7.5,10)

plot(x,y)

Here, you can again add graphical arguments to plot. Now we want to add a regression line. We
define the regression of 𝑦 on 𝑥 as:

#| eval: false

reg <- lm(y~x)

reg

str(reg)

abline(reg) # draws the regression line into the plot

Function abline just draws a line with a certain𝑦-axis intercept and slope (here given by the object
reg). See ?abline for detail. The function lm uses the given formula to fit a linear model. This
model can have several independent variables (we used one, namely x) and may also include
interactions between the independent variables (nested designs are also possible). Let’s go through
a little example. Denote again with y the dependent variable and with x1,x2,x3 the independent
variables.

If you want to include

• no interactions, the model is y ~ x1 + x2 + x3

• only all interactions of two variables, the model is y ~ (x1 + x2 + x3)ˆ2

• all interactions, the model is y ~ x1 * x2 * x3

To get more information, type ?lm. A good analysis of the iris dataset using linear models (lm) can
be found here: https://warwick.ac.uk/fac/sci/moac/people/students/peter_cock/r/iris_lm/

Reading and writing data files

Importing data from external sources such as tables from spreadsheet programs like Excel, text
files of measurement, output data from other programs, or data from big databases is a frequent
task in data analysis.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 20

We start first with a data set in format .txt, which we will create using the built-in editor in Rstudio.
Open a new .txt-file by clicking on the button marked with + in the upper right corner in the GUI and
choosing a new text file.

Type in:

height earlength experiment

150 15 a
120 11 b
135 11 c

Note here that we have a heading containing the column names and semicolons which separate
different values (imagine the data coming from measuring the traits in crop plants grown under
different experimental conditions). Save the file asdata2.txt in your working directory. We will now
import this data set as a data frame in R. This can be either done by clicking on Import Dataset in
Rstudio in the upper right corner (and specify the header, the separation symbol etc.). The same can
be done by using the command read.csv with suitable parameters.

#| eval: false

data2 <- read.csv("data2.txt", sep = ";")

The argument header has the default value TRUE meaning that the program reads in the first row of
the text as the header containing column names (For numbers, read.csv expects the decimal
symbol .). The same command also works for excel files if you export the files from Excel as csv
files.

A similar command is read.table, but it has different default values for the arguments.

Data frames can be saved as text files with write.table, which has the same arguments and
default values as read.table. You only have to specify the name of the output file:

#| eval: false

write.table(data1, "data1.txt", sep = ";") # Separation symbol ;

You can view output file in the built-in editor of Rstudio.

Another command for writing to text files is write.csv. It allows no control on arguments to enable
problem-free export to Excel.

To save a R-object as a R-object, which is not a text file but a binary object, you can use the
command save. Hdere is an example to write R objects v1 and v2 to a file with save by writing all
objects into a file called vector.RData. The ending .RData is not mandatory but used to indicate
that the file is a binary file containing R objects, which can be imported into R with load.

#| eval: false

save(v1, v2, file = "vector")

v1 <- 0 # Change v1

v2 <- 0 # Change v2

load("vector") # Load the previous definitions of the vectors

v1

v2

The workspace including all defined variables can be saved by save.image("file_name") and
loaded by load("file_name").

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 21

16.1 Exercise

Make a file called tst1.txt in a Text File window of RStudio similar to the above
text file and store it in your working directory. Write a script to read it, to multiply the
column called g by 5 and to store it as tst2.txt.

Not available (or missing) data

As already mentioned, missing data should be coded as NA. One way to exclude missing data is to
only keep data rows that are complete for all variables. This can be done by na.exclude. For
vectors and data frames, it marks all missing values to be ignored in further analyses. To show the
positions of NA, use is.na. It gives the same object format with logical values indicating whether
there is a missing value (TRUE) or not (FALSE). To check whether there is any missing data at all, use
any(is.na())

v_na <- c(NA, 2, 4, NA)

data_na <- data.frame(b1 = 1:4, b2 = c(NA, 3, 3, NA))

data_na

is.na(v_na)

any(is.na(v_na))

is.na(data_na)

data_good <- na.exclude(data_na) # Remove all rows with NA

data_good

str(data_good)

mean(na.exclude(v_na)) # Compute the mean of present values, no permanent change in v_na

16.2 Exercise

Compute the mean of the square root of a vector of 100 random numbers. What
happens?

When you work with real data, you will encounter missing values because instrumentation failed or
because you didn’t want to measure in the weekend. When a data point is not available, you write NA
instead of a number.

j <- c(1,2,NA)

Calculating statistics of incomplete data sets is strictly speaking not possible. Maybe the largest
value occurred during the weekend when you didn’t measure. Therefore, R will say that it doesn’t
know what the largest value of j is:

> max(j)

[1] NA

If you don’t mind about the missing data and want to compute the statistics anyway, you can add
the argument na.rm = TRUE (Should I remove the NAs? Yes!).

> max(j, na.rm=TRUE)

[1] 2

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 22

Classes

The exercises you did before were nearly all with numbers. Sometimes you want to specify
something which is not a number, for example the name of a measurement station or data file. In
that case you want the variable to be a character string instead of a number.

An object in R can have several so-called classes. The most important three are numeric, character
and POSIX (date-time combinations). You can ask R what class a certain variable is by typing
class(...).

17 Characters

To tell R that something is a character string, you should type the text between apostrophes,
otherwise R will start looking for a defined variable with the same name:

> m <- "apples"

> m

[1] "apples"

> n <- pears

Error: object ‘pears’ not found

Of course, you cannot do computations with character strings:

> m + 2

Error in m + 2 : non-numeric argument to binary operator

18 Dates

Dates and times are complicated. R has to know that 3 o’clock comes after 2:59 and that February
has 29 days in some years. The easiest way to tell R that something is a date-time combination is
with the function strptime:

> date1 <- strptime(c("20170225230000",

+ "20170226000000", "20170226010000"),

+ format="%Y%m%d%H%M%S")

>

> date1

[1] "2017-02-25 23:00:00"

[2] "2017-02-26 00:00:00"

[3] "2017-02-26 01:00:00"

• In lines 1-2 you create a vector with c(...). The numbers in the vectors are between
apostrophes because the function strptime needs character strings as input.

• In line 3 the argument format specifies how the character string should be read. In this case
the year is denoted first (%Y), then the month (%m), day (%d), hour (%H), minute (%M) and
second (%S). You don’t have to specify all of them, as long as the format corresponds to the
character string.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 23

18.1 Exercise

Make a graph with on the x-axis: today, the next end-of-year day and your next birthday
and on the y-axis the number of presents you expect on each of these days. Tip: make
two vectors first.

Programming tools

When you are building a larger program than in the examples above or if you’re using someone else’s
scripts, you may encounter some programming statements. In this Section we describe a few tips
and tricks.

To write complex functions or to use commands repeatedly in an automatic fashion, it is necessary
to use R as a programming language. The two most important ingredients of programming are
conditions (if, else) and loops (repetition of commands).

19 Conditional execution of commands

The if-statement is used when certain computations should only be done when a certain condition
is met (and maybe something else should be done when the condition is not met). An example:

> w <- 3

> if(w < 5){

+ d = 2

+ } else {

+ d = 10

+ }

> d

[1] 2

• In line 2 a condition is specified: w should be less than 5.
• If the condition is met, R will execute what is between the first brackets in line 4.
• If the condition is not met, R will execute what is between the second brackets, after the else

in line 6. You can leave the else{. . . }-part out if you don’t need it.
• In this case, the condition is met and d has been assigned the value 2 (lines 8-9).

The syntax of the commands is

if (logical condition) {command} else {commands} # The else part is optional

If the logical condition equals TRUE, then the the commands in the first brackets are used. If else is
used, the second set of commands will be used if the logical condition equals FALSE. We will now
define a function which states whether a numerical value is positive.

#| eval: false

pos <- function(x){if (x > 0){print("positive")} else {print("not positive")}

Try out the new defined function pos!

if-conditions can be nested, for example we can give the sign of a numerical value b
programming

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 24

#| eval: false

sign2 <- function(x){

if (x > 0){

print("positive")

}

else{

if (x == 0){

print("value is 0")

}

else{

print("negative")

}

}

}

There is a (somewhat) similar function to if in R called switch.

To get a subset of points in a vector for which a certain condition holds, you can use a shorter
method:

> a <- c(1,2,3,4)

> b <- c(5,6,7,8)

> f <- a[b == 5 | b == 8] > f

[1] 1 4

• In line 1 and 2 two vectors are made.
• In line 3 you say that f is composed of those elements of vector a for which b equals 5 or 8.

Note the double = in the condition. Other conditions (also called logical or Boolean operators)
are <, >, !=, <= and >= >=. To test more than one condition in one if-statement, use & if both
conditions have to be met (“and”) and | if at least one of the conditions has to be met (“or”).

20 Repeated execution of commands

Repeated use of a command can be achieved by using one of the following commands:

• repeat{commands}:repeats the commands until it hits break
• while(condition){commands}: Repeats the commands as long as the condition is fulfilled
• for (range) {commands}: Repeats the commands for as many times as specified by range

These commands are manipulating loops:

• next: jumps right to the begin of the loop
• break: ends the loop

The exact syntax of these loop commands will be shown for the example of summing up all entries
of a vector v.

With repeat:

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 25

v <- 1:10 # An arbitrary vector

sumv <- 0

i <- 0

repeat {

i <- i + 1

sumv <- sumv + v[i]

if (i < length(v)) {next}

print(sumv)

break}

With while:

sumv <- 0 # Reset value

i <- 0 # Reset value value

while (i < length(v)) {

i <- i + 1

sumv <- sumv + v[i]

}

print(sumv)

With a for loop:

sumv <- 0 # Set back value

for (i in seq(along = v)){sumv <-sumv + v[i]}

print(sumv)

For the for-loop, we used seq(along = v) instead of 1:length(v) because of possible problems
if length(v) would be zero. Summing up a vector is already implemented in R, just type sum(v).

20.1 Exercise

For any numerical vector v, write a function/R-script that computes the sum of all
positive and all negative values and shows the results on the screen. Try to use loops
and/or conditions. Test it with several vectors. Do you have to use loops and/or
conditions?

Remark: An output consisting of text and variables can be displayed by using cat. Try ?cat. A small
example:

x <- 42

cat("The answer is", x, "\n")

If you want to model a time series, you usually do the computations for one time step and then for
the next and the next, etc. Because nobody wants to type the same commands over and over again,
these computations are automated in for-loops.

In a for-loop you specify what has to be done and how many times. To tell “how many times”, you
specify a so-called counter. An example:

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 26

> h <- seq(from = 1, to = 8)

> s <- c()

> for (i in 2:10)

{

s[i] = h[i] * 10

}

> s

[1] NA 20 30 40 50 60 70 80 NA NA

• First the vector h is made.
• In line 2 an empty vector (s) is created. This is necessary because when you introduce a
variable within the for-loop, R will not remember it when it has gotten out of the for-loop.

• In line 3 the for-loop starts. In this case, i is the counter and runs from 2 to 10.
• Everything between the curly brackets (line 5) is processed 9 times. The first time i=2, the

second element of h is multiplied with 10 and placed in the second position of the vector s.
The second time i = 3, etc. In the last two runs, the 9th and 10th elements of h are requested,
which do not exist. Note that these statements are evaluated without any explicit error
messages.

20.2 Exercise

Make a vector from 1 to 100. Make a for-loop which runs through the whole vector.
Multiply the elements which are smaller than 5 and larger than 90 with 10 and the other
elements with 0.1.

21 Writing your own functions

Functions you program yourself work in the same way as pre-programmed R functions.

fun1 <- function(arg1, arg2)

{

w = arg1 ˆ 2

return(arg2 + w)

}

mod <- fun1(arg1 = 3, arg2 = 5)

mod

• In line 1 the function name (fun1) and its arguments (arg1 and arg2) are defined.
• Lines 2-5 specify what the function should do if it is called. The return value (arg2+w) is given

as output. - In line 6 the function is called with arguments 3 and 5 and the answer is shown on
the screen.

• In line 8 the answer is stored in the variable mod.

21.1 Exercise

Write a function for the previous exercise, so that you can feed it any vector you like (as
argument). Use a for-loop in the function to do the computation with each element. Use
the standard R function length in the specification of the counter.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 27

22 OPTIONAL: Vector-oriented programming

If you want to apply a function on each entry of a vector, this can either be done by writing a loop
as described in the last section or by using sapply (the latter being faster in most cases). For
example, we want to square each entry of a numerical vector.

v <- 1:10

square <- function(x) {xˆ2} # Define the square function

sapply(v, square) # Arguments: vector/data frame, function

If used wth a data frame, the function is applied to each column of the data frame. To apply the
same function to either rows or columns of a matrix,use apply. We will search for the maximum
value in each row and each column of a matrix.

matrix3 <- matrix(1:25, nrow = 5)

matrix3 # Computes the maximal values in each row

apply(matrix3, 1, max)

apply(matrix3, 2, max) # Computes the maximal values in each column

The second argument of apply specifies whether the function is applied to rows or columns. Often,
we want to apply a function to a data frame, but only to all individuals/ rows that carry a certain
experimental condition (= column value). This can be done with tapply. Let’s imagine an
experiment with conditions a and b. We want to compute the mean (command mean) for the values
of each condition.

data3 <- data.frame(values = 1:10, condition = c(rep("a", 5), rep("b", 5)))

data3

attach(data3)

tapply(values, condition, mean)

detach(data3)

Reference section: Useful commands and functions in R

23 Data creation

• read.table: read a table from file. Arguments: header=TRUE: read first line as titles of the
columns; sep=",": numbers are separated by commas; skip = n: don’t read the first n lines.

• write.table: write a table to file
• c: paste numbers together to create a vector
• array: create a vector, Arguments: dim: length - matrix: create a matrix, Arguments: ncol

and/or nrow: number of rows/columns
• data.frame: create a data frame
• list: create a list
• rbind and cbind: combine vectors into a matrix by row or column

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 28

24 Extracting data

• x[n]: the n-th element of a vector
• x[m:n]: the m-th to nth element
• x[c(k,m,n)]: specific elements
• x[x>m & x<n]: elements between m and n - xn: element of list or data frame named n -
x[[“n”]]: idem

• [i,j]: element at i-th row and j-th column - [i,]: row i in a matrix

25 Information on variables

• length: length of a vector
• ncol or nrow: number of columns or rows in a matrix
• class: class of a variable
• names: names of objects in a list
• print: show variable or character string on the screen (used in scripts or for-loops)
• return: show variable on the screen (used in functions)
• is.na: test if variable is NA
• as.numeric or as.character: change class to number or character string
• strptime: change class from character to datetime (POSIX)

26 Plotting

• plot(x): plot x (y-axis) versus index number (x-axis) in a new window
• plot(x,y): plot y (y-axis) versus x (x-axis) in a new window
• image(x,y,z): plot z (color scale) versus x (x-axis) and y (y-axis) in a new window
• lines or points: add lines or points to a previous plot
• hist: plot histogram of the numbers in a vector
• barplot: bar plot of vector or data frame
• contour(x,y,z): contour plot
• abline: draw line (segment). Arguments: a,b for intercept a and slope b; or h = y for

horizontal line at y; or v = x for vertical line at x.
• curve: add function to plot. Needs to have an x in the expression. Example: curve(xˆ2)
• legend: add legend with given symbols (lty or pch and col) and text (legend) at location (x
= "topright")

• axis: add axis. Arguments: side – 1 =bottom, 2 = left, 3 = top, 4 = right
• mtext: add text on axis. Arguments: text (character string) and side
• grid: add grid
• par: plotting parameters to be specified before the plots. Arguments: e.g. mfrow=c(1,3)):

number of figures per page (1 row, 3 columns); new = TRUE: draw plot over previous plot.

27 Plotting parameters

These can be added as arguments to plot, lines, image, etc. For help see par.

• type: “l”=lines, “p”=points, etc.
• col: color – “blue”, “red”, etc
• lty: line type – 1=solid, 2=dashed, etc.

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 29

• pch: point type – 1=circle, 2=triangle, etc.
• main: title character string
• xlab and ylab: axis labels – character string
• xlim and ylim: range of axes – e.g. c(1,10)
• log: logarithmic axis – “x”, “y” or “xy”

28 Statistics

• sum: sum of a vector (or matrix)
• mean: mean of a vector
• sd: standard deviation of a vector
• max or min: largest or smallest element
• rowSums (or rowMeans, colSums and colMeans): sums (or means) of all numbers in each row
(or column) of a matrix. The result is a vector.

• quantile(x,c(0.1,0.5)): sample the 0.1 and 0.5th quantiles of vector x

29 Data processing

• seq: create a vector with equal steps between the numbers
• rnorm: create a vector with random numbers with normal distribution (other distributions are

also available)
• sort: sort elements in increasing order
• t: transpose a matrix
• aggregate(x,by=ls(y),FUN="mean"): split data set x into subsets (defined by y) and

computes means of the subsets. Result: a new list.
• na.approx: interpolate (in zoo package). Argument: vector with NAs. Result: vector without

NAs.
• cumsum: cumulative sum. Result is a vector.
• rollmean: moving average (in the zoo package) - paste: paste character strings together
• substr: extract part of a character string

30 Fitting

• lm(v1 ~ v2): linear fit (regression line) between vector v1 on the y-axis and v2 on the x-axis
• nls(v1 ~ a + b * v2, start = ls(a = 1, b = 0)): nonlinear fit. Should contain

equation with variables (here v1 and v2 and parameters (here a and b) with starting values
• coef: returns coefficients from a fit
• summary: returns all results from a fit

31 Programming

• function (arglist) {expr}: function definition: do expr with list of arguments arglist
• if (cond) {expr1} else {expr2} : if-statement: if cond is true, then expr1, else expr2
• for (var in vec) {expr}: for-loop: the counter var runs through the vector vec and does

expr each run
• while (cond) {expr}: while-loop: while cond is true, do expr each run

Methods of Scientific Working (for Crop Sciences) (3502-440) Page 30

32 Keyboard shortcuts

There are several useful keyboard shortcuts for RStudio (see Help→ Keyboard Shortcuts):

• CRL+ENTER: send commands from script window to command window
• \uparrow or _ in command window: previous or next command
• CTRL+1, CTRL+2, etc.: change between the windows

Not R-specific, but very useful keyboard shortcuts:

• CTRL+C, CTRL+X and CTRL+V: copy, cut and paste
• ALT+TAB: change to another program window - ^ _� or�movecursor
• HOME or END: move cursor to begin or end of line
• Page Up or Page Down: move cursor one page up or down
• SHIFT+^/_/�/�/HOME/END/PgUp/PgDn: select

33 Error messages

• No such file or directory or Cannot change working directory: Make sure the
working directory and file names are correct.

• Object ‘x’ not found: The variable x has not been defined yet. Define x or write
apostrophes if x should be a character string.

• Argument ‘x‘ is missing without default: You didn’t specify the compulsory argument
x.

• +: R is still busy with something or you forgot closing brackets. Wait, type } or) or press ESC.
• Unexpected ‘)‘ in ")" or Unexpected ‘}‘ in "}": The opposite of the previous. You try

to close something which hasn’t been opened yet. Add opening brackets.
• Unexpected ‘else’ in "else": Put the else of an if-statement on the same line as the last

bracket of the “then”-part: }else{.
• Missing value where TRUE/FALSE needed: Something goes wrong in the condition-part
(if(x==1)) of an if-statement. Is x NA?

• The condition has length > 1 and only the first element will be used In the
condition-part (if(x==1)) of an if-statement, a vector is compared with a scalar. Is x a vector?
Did you mean x[i]?

• Non-numeric argument to binary operator: You are trying to do computations with
something which is not a number. Use class(...) to find out what went wrong or use
as.numeric(...) to transform the variable to a number.

• Argument is of length zero or Replacement is of length zero: The variable in
question is NULL, which means that it is empty, for example created by c(). Check the
definition of the variable.

Further literature

There’s an extensive list of books about R (with book descriptions) available at
http://www.r-project.org/doc/bib/R-books.html. From our lab, the recommendations of books would
be

• M. J. Crawley, “The R Book”, Wiley %- M. J. Crawley, “Statistics: An Introduction using R”, Wiley
• U. Ligges, “Programmieren mit R”, Springer (in German, this course is based on it)

There are also some manuals available at the R-project website http://cran.r-project.org/.

http://www.r-project.org/doc/bib/R-books.html
http://cran.r-project.org/

	RStudio: Your work environment
	Working directory
	Libraries
	R as calculator - Part 1
	Workspace
	R Style guide
	Vectors
	Working with vectors
	Functions
	R as calculator - Part 2
	Vectors
	Matrices
	Data frames
	Lists
	More advanced plotting
	Basic linear regression models
	Characters
	Dates
	Conditional execution of commands
	Repeated execution of commands
	Writing your own functions
	OPTIONAL: Vector-oriented programming
	Data creation
	Extracting data
	Information on variables
	Plotting
	Plotting parameters
	Statistics
	Data processing
	Fitting
	Programming
	Keyboard shortcuts
	Error messages

