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Motivation



Motivation
• Studying the genetics of natural variation 

• Understanding the genetic architecture of 
traits of ecological and agricultural 
importance 

• Identifying the genomic regions that control 
genetic variation 

• Test association at many variants instead of 
some and hypothesis-free instead of 
hypothesis-driven.
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A	simple	GWAS	example
• Sodium concentration measured in A. thaliana leaves.

Bonferroni

Manhattan plots



Multiple	testing	correction
• In GWAS a large number of marker tests are conducted, which 

leads to a multiple testing problem. 

• Using a 5% significance threshold, we would expect 5% of the 
markers that have true marker effects of 0 to be significant. 

• Solutions include: 
• Bonferroni correction: By assuming markers are independent we 

can obtain a conservative bound on the probability of rejecting the 
null hypothesis for one or more markers. 

for a given significance threshold     .  

• Other common methods include adjusted Bonferroni correction 
depending on rank, and permutations. 



Multiple	testing	correction
• Many SNP markers -> multiple testing problem.
• 5% of the markers with true marker effects of 0 are 

significant.
• Possbile solutions:

• Bonferroni correction: Conservative bound on the 
probability of rejecting the null hypothesis for one or more 
markers.

for a given significance threshold     . 
• Other common methods include adjusted Bonferroni 

correction depending on rank, and permutations. 



GWAS	-	a	success	story

http://www.genome.gov/
gwastudies/



Why	plants	(A.	thaliana)?
• Replicates usually available either through       

clonal propagation or the existence of inbred 
lines 

• Relationship with breeding 
• A.thaliana: the model plant 

• small size 
• rapid life cycle 
• small genome (~150 Mb, 5 Chr.) 
• inbred (self-fertilization) 
• transgenics (follow up) 
• mutant collections (follow up)



Why	plants	(A.	thaliana)?	
Availability of lines

• Curated information about 7522 accessions (https://goo.gl/IwGah) 



Why	plants	(A.	thaliana)?	
Availability of genotypes

Genotyping data: 
• 250k Affymetrix genotyping array (Horton et al., 2012) 

• 250.000 probes → after filtering 214.051 SNPs for 1307 
accessions. 

• Expected resolution is pretty good (average SNP density 1 per 550 
bp | LD decays on average within 10 kb. Kim et al., 2007) 

Full-sequence data: 
• Small sets: 

• Long et al., 2013 (181 accessions) 
• Cao et al., 2010 (80 accessions) 
• Schmitz et al., 2013 (195 accessions) 

• 1001genomes (http://the1001genomes.org): 
• Joint effort of MPI, GMI, Salk and Monsanto 
• 10 Million SNPs and 500k structural var. for 1135 accessions 
• Imputation → 2029 accessions



Why	plants	(A.	thaliana)?	
Availability of phenotypes

• Atwell et al., 2010: 
• 107 phenotypes on up to 197 accessions 
• 4 categories: flowering (23), defence (23), ionomics (18), 

development (18) 
• https://github.com/Gregor-Mendel-Institute/atpolydb 

• Other sources on larger datasets: 
• Baxter et al., 2010: sodium concentration on 342 

accessions. 
• Li et al., 2010: flowering time for 473 accessions grown in 

4 controlled environments 
• Unpublished data: flowering time, germination, leaf 

morphology, metabolite levels, gene expression

https://github.com/Gregor-Mendel-Institute/atpolydb


Linkage	disequilibrium
• Neighboring markers will tend to be inherited together, causing 

linkage disequilibrium (LD) between the two markers 

• Since LD causes correlations between markers, in a given 
population we expect a lot of redundancy in the genotypes.

Causative gene

Phenotype

Genotyped SNP

Indirect 
association

Causal association

Linkage disequilibrium

Unobserved causal SNP



Population	Structure
• Isolation by distance (Platt et al, 2010) 
• Accessions tend to cluster in sub-populations according to their 

geographic origin



Population	Structure
• Confounding due to population structure may arise if it 

correlates with the trait in question. 

• Any variant which is fixed for different alleles in each sub-
population will show an association.

Sub-population 1

Sub-population 2



Examples	of	Population	Structure	
Confounding
• Humans: 

• Genetic marker for skin color might also be associated with 
malaria resistance because the trait is correlated with the 
population structure.

• A. thaliana: 
• Flowering time is 

correlated with 
latitude 

• Disease resistance is 
NOT correlated with 
population structure

late flowering

early flowering



Population	Structure	is	reflected	in	long	
range	LD.

Linkage disequilibrium 
in A. thaliana, 214K 
SNPs and 1307 
accessions.



Implication	for	Association	Studies
• Test statistic is inflated 
• High false positive rate

causal SNP



Association	mapping	in	structured	
populations
• Genomic control: Scale down the test-statistic so that its 

median becomes the expected median.  Heavily used, but does 
not solve the problem (Devlin & Roeder 1999, Biometrics)! 

• Structured association (Pritchard et al. 2000, Am.J.Hum.Genet.) 

• PCA approach: Accounting for structure using the first n principle 
components of the genotype matrix (Price et al., 2006).  
However when population structure is very complex, e.g. in A. 
thaliana, too many PCs are needed. 

• Mixed Model approach: Model the genotype effect as a random 
term in a mixed model, by explicitly describing the covariance 
structure between the individuals (Yu et al. 2006, Nature 
Genet.; Kang et al. 2008, Genetics).



GWAS	Methods	

Linear Model, Non-parametric test, Linear Mixed Model, 
Advanced Linear Mixed Models & Caveats & Problems



Linear	Model	(LM)
A linear model generally refers to linear regression models in statistics.

• Y typically consists of the phenotype values, or 
case-control status for N individuals. 

• X is the NxP genotype matrix, consisting of P 
genetic variants (e.g. SNPs). 

• ϐ is a vector of P effects for the genetic variants. 
• ϵ  is still just known as the noise or error term.  



Linear	Mixed	Model	(LMM)
• Linear model and Non-parametric tests don’t account for 

population structure 

• Initially proposed in association mapping by Yu et al. (2006) 
• Y typically consists of the phenotype values, or case-control status 

for N individuals. 
• X is the NxP genotype matrix, consisting of P genetic variants (e.g. 

SNPs). 
• u is the random effect of the mixed model with var(u) = σ g K 
• K is the N x N kinship matrix inferred from genotypes 
• ϐ is a vector of P effects for the genetic variants. 
• ϵ is a N x N matrix of residual effects with var(ε) = σ e I



Kinship
• The kinship measures the degree of relatedness, and is in 

general different from the covariance matrix. 

• It is estimated using either pedigree (family relationships) data 
or (lately) using genotype data.  
• When estimating it from pedigree data, one normally assumes 

that the ancestral founders are “unrelated”. 
• They are sensitive to confounding by cryptic relatedness. 

• Alternatively the kinship can be estimated from genotype data. 
• Genotype data may be incomplete. 
• Weights or scaling of genotypes can impact the kinship. 

• A. thaliana using an IBS matrix works pretty well (Zhao et al., 
2007, Atwell et al., 2010)



Linear	Mixed	Model	(LMM)
• Original implementation: EMMA (Kang et al., 2008) 

• Problem: O(PN³) → 1 GWAS in 1 day (500k individuals) 

• Approximate methods O(PN²): 
• GRAMMAR (Aulchenko et al., 2007) http://www.genabel.org/packages/

GenABEL 
• P3D (Zhang et al., 2010) http://www.maizegenetics.net/#!tassel/c17q9 
• EMMAX (Kang et al., 2010) http://genetics.cs.ucla.edu/emmax/ 

• Exact methods: 
• FaST LMM (Lippert et al., 2011) http://mscompbio.codeplex.com/ 
• GEMMA (Zhou et al., 2012) http://www.xzlab.org/software.html 

• This is too slow for large samples (>20000 individuals), i.e. exactly the 
sample sizes where one might expect to see most gains. 
• BOLT-LMM (Loh et al., 2015), O(PN) https://

data.broadinstitute.org/alkesgroup/BOLT-LMM/?

http://www.genabel.org/packages/GenABEL
http://www.genabel.org/packages/GenABEL
http://www.maizegenetics.net/#!tassel/c17q9
http://genetics.cs.ucla.edu/emmax/
http://mscompbio.codeplex.com/
http://www.xzlab.org/software.html


BOLT-LMM

Po-Ru Loh et al. (Nat Genet 2015) 



LMM	reduces	test	statistic	inflation



GWAS for a simulated phenotype

LMM	reduces	false	positive	rate



Advanced	Mixed	Models
The mixed-model performs pretty well, but GWAS power remain limited and 
need to be improved: 
• Multi Locus Mixed Model (MLMM, Segura et al., 2012): 

• Single SNP tests are wrong model for polygenic traits 
• Increase in power compared to single locus models 
• Detection of new associations in published datasets 
• Identification of particular cases of (synthetic associations) and/or 

allelic heterogeneity 
• Multi Trait Mixed Model (MTMM, Korte et al., 2012): 

• Traits are often correlated due to pleiotropy (shared genetics) or 
linkage between causative polymorphisms. 

• Combining correlated traits in a single model should thus increase 
detection power 

• When multiple phenotypes consists in a single trait measure in multiple 
environments, plasticity can be studies through the assessment of GxE 
interaction



Caveats	&	Problems
Accounting for population structure does not alway work:



Caveats	&	Problems
Difficult to decide which peaks are significant (Solution: permutation)



Caveats	&	Problems
Peaks are complex and make it difficult to pinpoint causative site



Caveats	&	Problems
Condition under which GWAS will be positively misleading: 
• Correlation between causal factors and unlinked non-causal  

markers 
• More than one causal factor 
• Epistasis 

Platt et al., 2010



Caveats	&	Problems
Different associations for different subsets (i.e. Flowering time at 10 °C 
• Highly heritable, easy to measure, polygenic trait  
• 925 worldwide accessions 
• Flowering time greatly varies in different populations



Caveats	&	Problems
Significance and effect 
size differ dramatically in 
different subsets 
Reasons: 
• False positives 

• Effect depends on 

genetic background 

(Epistasis) 

• Differences in allele 

frequency of the 

causal marker 

• Artefact of LMM



Caveats	&	Problems



Examples	of	GWAS	in	PGR



Milner et al., Nature Genetics (2019)



Comparison	of	IPK	with	International	Barley	Core	collection

Milner et al., Nature Genetics (2019)



Row type genes

Hull adherence gene

Flowering time genes

Disease resistance gene

Disease resistance gene

Domestication genes:

Agronomic genes:

Milner et al., Nature Genetics (2019)

Large-scale	GWAS	study



Mapping	of	novel	genes:	Awn	roughness

Wild

Domesticated

GWAS

Bulk segregant analysis

Validation by mutagenesis

Rough awn 1 gene

Milner et al., Nature Genetics (2019)



Seed	color	in	Amaranth

GWAS

QTL

BSA

Stetter et al., Mol. Biol. Evol. (2020)



Summary
• GWAS is a powerful tool to understand the genetics of natural 

variation.  
• Methods are fast enough to do GWAS on big sample sizes in 

reasonable time 
• Population structure confounding can cause issues 

• Linear Mixed Model can help address this issue 
• BUT GWAS is not without challenges to be aware of 

• Epistatic interaction 
• Allelic heterogeneity 
• GWAS on sub-samples  
• … 

• Web-based tools like GWA-Portal allow to mine the GWAS data, 
look at the information from different perspectives and uncover 
previously unknown pleiotropic effects.
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