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Motivation

Studying the genetics of natural variation

Understanding the genetic architecture of
traits of ecological and agricultural
iImportance

|dentifying the genomic regions that control
genetic variation

Test association at many variants instead of
some and hypothesis-free instead of
hypothesis-driven.
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Phenotype = Genotype + Environment + GxE
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A simple GWAS example
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» Sodium concentration measured in A. thaliana leaves.
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Multiple testing correction

- In GWAS a large number of marker tests are conducted, which
leads to a multiple testing problem.

- Using a 5% significance threshold, we would expect 5% of the
markers that have true marker effects of O to be significant.

» Solutions include:

Bonferroni correction: By assuming markers are independent we
can obtain a conservative bound on the probability of rejecting the
null hypothesis for one or more markers.
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Other common methods include adjusted Bonferroni correction
depending on rank, and permutations.




Multiple testing correction

- Many SNP markers -> multiple testing problem.

* 5% of the markers with true marker effects of O are
significant.

- Possbile solutions:

Bonferroni correction: Conservative bound on the
probability of rejecting the null hypothesis for one or more

markers.
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for a given significance threshold

Other common methods include adjusted Bonferroni
correction depending on rank, and permutations.




GWAS - a success story

Published GWA Reports, 2005 - 2013

Published Genome-Wide Associations through 12/2013
Published GWA at p<5X10° for 17 trait categories 1 960

2000

1500

> X /3 -3 Vi e ,Aﬂ'
. e g g e :
W R NHGRI GWA Catalog
1000 e v e wmn WWwW.genome.gov/GWAStudies
www.ebi.ac.uk/fgpt/gwas/ EMBL-EBI i;
0 ___-.III|IIII||

2005 2006 2007 2008 2009 2010 2011 2012 2013
Calendar Quarter  nhttp://www.genome.gov/

PR S L |

Total Number of Publications




Why plants (A. thaliana)?

» Replicates usually available either through
clonal propagation or the existence of inbred
lines

» Relationship with breeding

» A.thaliana: the model plant

small size

rapid life cycle

small genome (~150 Mb, 5 Chr.)
inbred (self-fertilization)
transgenics (follow up)

mutant collections (follow up)
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Why plants (A. thaliana)?

Availability of lines

Curated information about 7522 accessions

Colombia

(https://goo.gl/

IwGah)




Why plants (A. thaliana)?

Availability of genotypes

Genotyping data:

- 250k Affymetrix genotyping array (Horton et al., 2012)
250.000 probes — after filtering 214.051 SNPs for 1307
accessions.

Expected resolution is pretty good (average SNP density 1 per 550
bp | LD decays on average within 10 kb. Kim et al., 2007)
Full-sequence data:
«  Small sets:
Long et al., 2013 (181 accessions)
Cao et al., 2010 (80 accessions)
Schmitz et al., 2013 (195 accessions)
- 1001genomes (http://the1001genomes.org):
Joint effort of MPI, GMI, Salk and Monsanto

10 Million SNPs and 500k structural var. for 1135 accessions
Imputation - 2029 accessions




Why plants (A. thaliana)?

Availability of phenotypes

- Atwell et al., 2010:

107 phenotypes on up to 197 accessions

4 categories: flowering (23), defence (23), ionomics (18),
development (18)
https://github.com/Gregor-Mendel-Institute/atpolydb

» Other sources on larger datasets:

Baxter et al., 2010: sodium concentration on 342
accessions.

Li et al., 2010: flowering time for 473 accessions grown in
4 controlled environments

Unpublished data: flowering time, germination, leaf
morphology, metabolite levels, gene expression



https://github.com/Gregor-Mendel-Institute/atpolydb

Linkage disequilibrium

« Neighboring markers will tend to be inherited together, causing
linkage disequilibrium (LD) between the two markers

{ Phenotype ]

Indirect
association

Causal association

Causative gene

A

Genotyped SNP

Linkage disequilibrium )

T

nobserved causal SNP

» Since LD causes correlations between markers, in a given
population we expect a lot of redundancy in the genotypes.




Population Structure

Isolation by distance (Platt et al, 2010)
Accessions tend to cluster in sub-populations according to their

geographic origin
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Population Structure

- Confounding due to population structure may arise if it
correlates with the trait in question.
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000000
AGOOOOO
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= Any variant which is fixed for different alleles in each sub-
population will show an association.




Examples of Population Structure

Confounding

« Humans:

Genetic marker for skin color might also be associated with
malaria resistance because the trait is correlated with the

population structure.

- A. thaliana:
Flowering time is
correlated with
latitude

Disease resistance is
NOT correlated with
population structure
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Population Structure is reflected in long

range LD.
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Implication for Association Studies

» Test statistic is inflated
- High false positive rate
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Association mapping in structured
populations

Genomic control: Scale down the test-statistic so that its
median becomes the expected median. Heavily used, but does
not solve the problem (Devlin & Roeder 1999, Biometrics)!
Structured association (Pritchard et al. 2000, Am.J.Hum.Genet.)

PCA approach: Accounting for structure using the first n principle
components of the genotype matrix (Price et al., 2006).
However when population structure is very complex, e.g. in A.
thaliana, too many PCs are needed.

Mixed Model approach: Model the genotype effect as a random
term in a mixed model, by explicitly describing the covariance
structure between the individuals (Yu et al. 2006, Nature
Genet.; Kang et al. 2008, Genetics).




Linear Model, Non-parametric test, Linear Mixed Model,
Advanced Linear Mixed Models & Caveats & Problems

GWAS Methods




Linear Model (LM)

A linear model generally refers to linear regression models in statistics.

P
ijZﬁjl‘z'j+€é Y =X'B+e
j=1

Y typically consists of the phenotype values, or
case-control status for N individuals.

X is the NxP genotype matrix, consisting of P
genetic variants (e.g. SNPs).

B is a vector of P effects for the genetic variants.

€ is still just known as the noise or error term.




Linear Mixed Model (LMM)

Linear model and Non-parametric tests don’t account for
population structure

Y=XB+u+e u~N(0,0,K) €~ N(0,0.l)
Initially proposed in association mapping by Yu et al. (2006)
Y typically consists of the phenotype values, or case-control status
for N individuals.
X is the NxP genotype matrix, consisting of P genetic variants (e.g.
SNPs).
u is the random effect of the mixed model with var(u) = o g K
K is the N x N kinship matrix inferred from genotypes
8 is a vector of P effects for the genetic variants.

€ is a N x N matrix of residual effects with var(e) =c e |




Kinship

The kinship measures the degree of relatedness, and is in
general different from the covariance matrix.

It is estimated using either pedigree (family relationships) data
or (lately) using genotype data.

When estimating it from pedigree data, one normally assumes
that the ancestral founders are “unrelated”.

They are sensitive to confounding by cryptic relatedness.

Alternatively the kinship can be estimated from genotype data.

Genotype data may be incomplete.
Weights or scaling of genotypes can impact the kinship.
A. thaliana using an IBS matrix works pretty well (Zhao et al.,

2007, Atwell et al., 2010)




Linear Mixed Model (LMM)

Original implementation: EMMA (Kang et al., 2008)

Problem: O(PN3) - 1 GWAS in 1 day (500k individuals)
Approximate methods O(PN?):

GRAMMAR (Aulchenko et al., 2007) http://www.genabel.org/packages/
GenABEL

P3D (Zhang et al., 2010) http://www.maizegenetics.net/#!tassel/c1799
EMMAX (Kang et al., 2010) http://genetics.cs.ucla.edu/emmax/

Exact methods:

FaST LMM (Lippert et al., 2011) http://mscompbio.codeplex.com/
GEMMA (Zhou et al., 2012) http://www.xzlab.org/software.html

This is too slow for large samples (>20000 individuals), i.e. exactly the
sample sizes where one might expect to see most gains.

BOLT-LMM (Loh et al., 2015), O(PN) https://
data.broadinstitute.org/alkesgroup/BOLT-LMM/?
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LMM reduces test statistic inflation

Linear Regression
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LMM reduces false positive rate

GWAS for a simulated phenotype

Linear % =
Regression 3 <« -
1 2 3 4 5
chromosome Causative
SNP
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Advanced Mixed Models

The mixed-model performs pretty well, but GWAS power remain limited and
need to be improved:
- Multi Locus Mixed Model (MLMM, Segura et al., 2012):

Single SNP tests are wrong model for polygenic traits
Increase in power compared to single locus models
Detection of new associations in published datasets
Identification of particular cases of (synthetic associations) and/or
allelic heterogeneity
- Multi Trait Mixed Model (MTMM, Korte et al., 2012):

Traits are often correlated due to pleiotropy (shared genetics) or
linkage between causative polymorphisms.

Combining correlated traits in a single model should thus increase
detection power

When multiple phenotypes consists in a single trait measure in multiple
environments, plasticity can be studies through the assessment of GxE
interaction




Caveats & Problems

Accounting for population structure does not alway work:

o 10 o0 10 200 10 0 10 20

20
Sometimes it Wilcoxon rank sum test
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Caveats & Problems

Difficult to decide which peaks are significant (Solution: permutation)

A: GWA analysis of hypersensitive response to bacterial elicitor

-log(p)
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B: GWA analysis of germination on MS medium
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Caveats & Problems

Peaks are complex and make it difficult to pinpoint causative site
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Caveats & Problems

Condition under which GWAS will be positively misleading:
» Correlation between causal factors and unlinked non-causal

markers

«  More than one causal factor

- Epistasis

the two causal loci

Platt et al., 2010
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Caveats & Problems

Different associations for different subsets (i.e. Flowering time at 10 °C
- Highly heritable, easy to measure, polygenic trait
- 925 worldwide accessions
- Flowering time greatly varies in different populations
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Caveats & Problems
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Significance and effect
size differ dramatically in
different subsets
Reasons:

- False positives

- Effect depends on
genetic background
(Epistasis)

- Differences in allele
frequency of the
causal marker

» Artefact of LMM




Caveats & Problems

Korte and Farlow Plant Methods 2013, 9:29
http//www plantmethods.com/content/9/1/29
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Abstract
Genome-wide association studies (GWAS) have been even more successful in plants than in humans.

Mapping approaches can be extended to dissect adaptive genetic variation from structured
background variation in an ecological context.

COMMENT

The nature of confounding in
genome-wide association studies

address this issue.

Thanks to dramatically decreasing genotyping and
sequencing costs, genome-wide association studies
(GWASs) are becoming the default method for studying
the genetics of natural variation. The increasing num-
ber and diversity of GWASs will require appropriate
statistical analysis methods. The most basic problem is
assessing the significance of an association in the light of
confounding effects that may cause spurious associations.

The aspect of this problem that has received the
most attention is the danger of false positives in struc-
tured populations. If the study population is a mixture
of populations that differ with respect to allele frequen-
cies as well as the trait of interest, spurious correlations

Bjarni J. Vilhjalmsson'? and Magnus Nordborg™*

The authors argue that population structure per se is not a problem in genome-wide
association studies — the true sources are the environment and the genetic background,
and the latter is greatly underappreciated. They conclude that mixed models effectively

in ‘unrelated’ individuals. Variation in relatedness is a
basic property of natural populations, as is correlation
between causative loci. This issue is familiar to quantita-
tive geneticists® but has not been widely appreciated in
other fields. It is important for GWASs and will become
crucial as sample sizes increase.

To demonstrate this, let us return to the chopstick
example but fast-forward to the era of millions of SNPs.
Genetic differentiation between East Asians and other

pulations means that vast numbers of markers in addi-
tion to HLA-A I would be associated with chopstick skill.
These markers would also be correlated with HLA-A1,
with each other and with any trait (genetic or not) that




Examples of GWAS in PGR

nature
genetlcs https://doi.org/10.1038/5s41588-018-0266-x

ARTICLES

Genebank genomics highlights the diversity of a
global barley collection
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PC2 (1.1%)

Table 1| Number of segregating SNPs detected by GBS in wild
and domesticated barley samples

Number of SNPs with SNPs with
SNPs MAF > 1% MAF >5%
All samples 171,263 23,908 15,683
(n=22,626)
Domesticated barleys 76,102 22,356 15,872
(n=19,778)
Wild barleys 127,408 46,392 20,51
(n=1140)
b
0.010
-."ol
0.005 — O
" <
o
S
0 - o
-0.005 —
—0.005 7 ¢ pomesticated =0.010 h
* Wild .
® Unknown L
| 1 T =0.015 = T T T T
-0.03 -0.02 -0.01 0 -0.005 0 0.005 0.010
PC1 (1.3%) PC1 (2.5%)

Milner et al., Nature Genetics (2019)




Comparison of [PK with International Barley Core collection

@ |PK collection
® |nternational BCC
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Mapping of novel genes: Awn roughness
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Seed color in Amaranth
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Summary

«  GWAS is a powerful tool to understand the genetics of natural
variation.

- Methods are fast enough to do GWAS on big sample sizes in
reasonable time

«  Population structure confounding can cause issues

Linear Mixed Model can help address this issue
- BUT GWAS is not without challenges to be aware of

Epistatic interaction
Allelic heterogeneity
GWAS on sub-samples

«  Web-based tools like GWA-Portal allow to mine the GWAS data,
look at the information from different perspectives and uncover
previously unknown pleiotropic effects.
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