

3502-470 Plant Genetic Resources

Prof. Karl Schmid SS 2025

Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim

1/37

Review of previous lecture

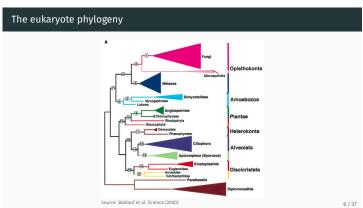
- $\cdot\,$ Food traditions are defined by biological and cultural factors
- Humans ate different crops at different times of their history.
- Currently, food habits are changing rapidly, which affects the commercial importance of plants.

2/37

Outline

- Taxonomic grouping of crop plants
- Basic information about plant architecture
- Functional grouping of crop plants

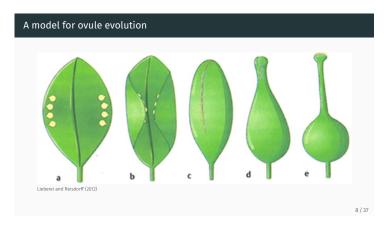
Learning goals

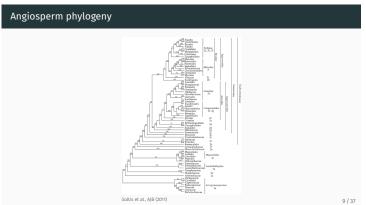

- \cdot Understand that crop plants have a history and are linked to wild plants
- $\cdot\,$ Understand why some plant groups contain more crops than others
- \cdot Know the basic elements of plant architecture

4 / 37

Classification of crop plants

- \cdot Taxonomic or systematic classification
- \cdot Functional classification
- \cdot Degree of domestication

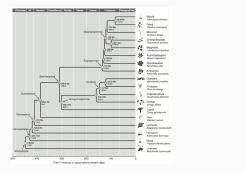

5/37



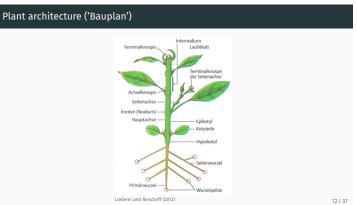
Definition of groups

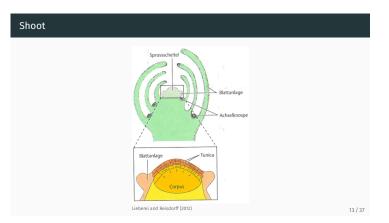
- \cdot Spermatophytes: Seed plants
- Gymnosperms vs. angiosperms
- Monocotyledons vs. dicotyledons

7 / 37

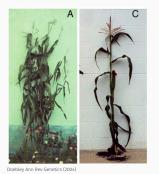


Differences between monocots and dicots



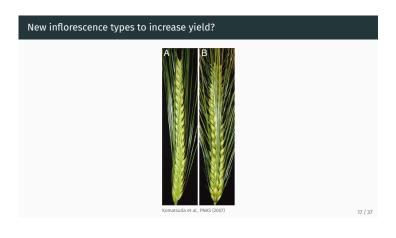

10 / 37

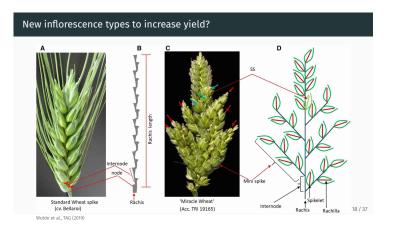
Evolutionary age of plant groups

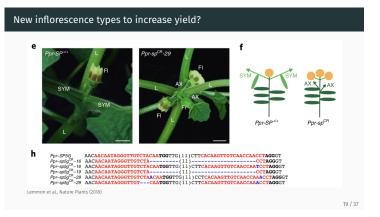


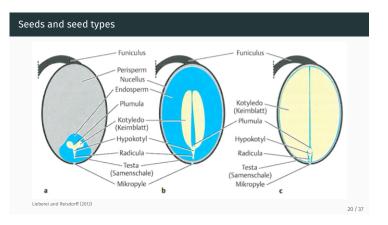
11 / 37

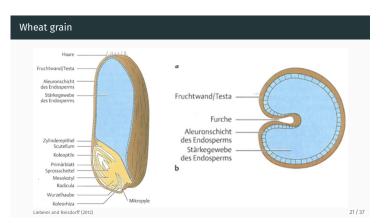
Comparison between maize and teosinte

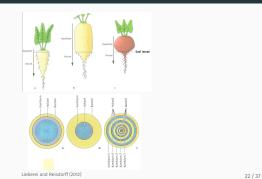



14 / 37


Genetic and environmental effect on shoot meristems





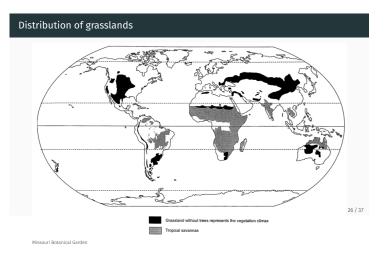


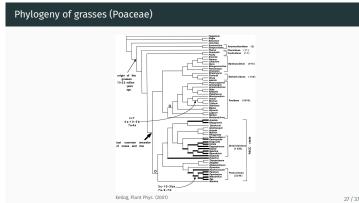
Roots

22 / 37

Distribution of crops among plant taxa

- $\cdot\,$ Grasses and legumes harbor each more than 25% of the crop species.
- $\cdot\,$ Rosaceae, Compositae, Euphorbiaceae, Labiatae and Solanaceae, all have more than 100 taxa.
- \cdot Among the families with 50 to 100 crop species there are Liliaceae, Agavaceae and Palmae.
- \cdot More than 50% of the families have less than 10 species.


23 / 37


Production (in tonnes) of 20 most important crops

Crop species	World production (Mio t)
Sugar cane	1,685
Maize	844
Rice	672
Wheat	651
Potatoes	324
Soybeans	262
Cassava	230
Sugar beet	228
Oil palm fruit	211
Tomatoes	146
Barley	123
Sweet potatoes	107
Bananas	102
Watermelons	89
Onions, dry	74
Apples	70
Oranges	69
Grapes	68
Seed cotton	68
Coconuts	62

Why are grasses so important for agriculture?

- \cdot Wind pollination
- Fast growth
- \cdot Resistance to herbivory
- C4 photosynthesis

Favorable traits of grasses

- \cdot Alter texture of soil
- \cdot Enrich for favorable soil organisms
- Created most fertile soils now used by agriculture

28 / 37

Root systems of annual and perennial grasses

29 / 37

Functional classification of crops

1. Food plants

2. Plants with a technical use

Food plants

- 1. Use of their carbohydrates
- 2. Use of their protein
- 3. Use of their fat and oil
- 4. Use of their fruits
- 5. Vegetables and salads
- 6. Plants for semiluxury uses ("Genussmittel"), e.g. Tobacco
- 7. Plant-derived psyochactive drugs
- 8. Plants with use as sweeteners
- 9. Spices
- 10. Fodder plants

31 / 37

Plants with technical use:

- 1. Fibers
- 2. Wood
- 3. Tannins (for tanning)
- 4. Rubber and similar compounds
- 5. Resin, balms and varnish
- 6. Wax
- 7. Dye
- 8. Insectides
- 9. Energy or fuel

32 / 37

Internet resources

- Mansfeld database: http://mansfeld.ipk-gatersleben.de
 Global Biodiversity Information Facility (GBIF) database:
- http://www.gbif.org

Summary

- The vast majority of crop plants belong to the group of higher plants
 Higher plants are differentiated into the main groups of
- gymnosperms and angiosperms.
- Angiosperms are differentiated into monocotyledons and dicotyledons.
- Plants share a common basic architecture that is extensively modified among the ancestors of crops and within the crops.
- The most important groups of crops are grasses (Poaceae), which belong to the monocotyledons.
- Grasses have various characteristics that a posteriori explain their importance as crop species.

 \cdot Crops can also be grouped by their different uses

34 / 37

Further reading

- Harlan (1992), Chapters 3 and 6
- Lieberei, Reisdorff. Nutzpflanzenkunde 7th Edition, Thieme Stuttgart
- References used to make this lecture (see handout)

35 / 37

Review questions

- Which factors contribute to the fact that the number of crop plants differ between the plant taxa?
- What factors determine, which species of grasses were domesticated by humans?
- Which approaches could be used to determine whether a plant species can be considered a crop or not?
- What is the second most important taxonomic family of crop plants worldwide based on the number of species or production volume? Why is this the case?

References i

Harlan JR (1992) Crops and man. Ed. 2, American Society of Agronomy