

3502-470 Plant Genetic Resources

Prof. Karl Schmid SS 2025

Institute of Plant Breeding, Seed Science and Population Genetics University of Hohenheim

1/29

Overview

Background

How to establish a core collection

Examples of existing core collections

2 / 29

Background

How to establish a core collection

Examples of existing core collections

Core collections-necessity and concept

- Very large *ex situ* collections in gene banks
- \cdot They are too difficult to maintain and evalualate
- Sir Otto Frankel proposed use of core collections in 1984
- Definition: A subcollection of limited size that, while minimizes the similarities among its entries, represents the genetic diversity in the whole collection
- Core collections facilitate the use of PGR because they are smaller.

4/29

Characteristics of core collections

- Original definition: Limited set of accessions, minimum of repetitiveness, maximal resp. representitive diversity
- Within a given gene bank, a core collection represents the genetic diversity in the gene bank (core subset)
- Core collection for the whole species: synthetic core collection

Design parameters of core collections

- \cdot Contains <10% of whole collections
- Not more than 2000 entries

5 / 29

Why construct a core collection?

Goals

- Increase the efficiency of the evaluation and therefore the utilization of existing collections
- Produce a manageable and representative selection of germplasm for research and breeding
- Provide adequate material for standardisation in scientific work
- Rationalize the search for new traits (e.g., resistances)
- Accumulate large quantitities of diverse evaluation results for a limited set of accessions.
- Allele mining: efficiently find useful genetic variation

Background

How to establish a core collection

Examples of existing core collections

7/29

Methods for establishing core collections

• Random sampling: not so bad, since

Population genetic theory (Brown (1989))

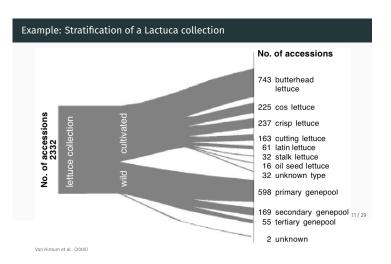
On average, a random sample of 10% of accessions accounts for 70% of variation present in the total collection.

• Structured approach: Increases the captured variation while minimizing the number of accessions. For example, in 2000 the sorghum core collection from ICRISAT consisting of 3 % of accessions contained > 90% of the variation (see

http://www.icrisat.org/crop-sorghum-genebank.htm)

Though more work, the structured approach is superior and should be used

8/29


Workflow of the structured approach

- Step 1 Identify the material (collection) that will be represented by the core collection.
- Step 2 Decide on the size of the core collection.
- Step 3 Divide the set of material used into distinct groups.
- Step 4 Decide on the number of entries per group.
- Step 5 Choose the entries from each group that will be included in the core.

Step 3: How to group material

- Geographic origin
- \cdot Phenotypic variation
- \cdot Genetic variation
- Agronomic characteristics (e.g., threshold for specific trait)

10 / 29

Practical questions

Step 3: How to cluster into groups?

- Multivariate statistical approaches (e.g., PCA)
- STRUCTURE analysis

Step 4: How many individuals should be in each group?

• First idea: Same proportion of accessions in total collection should be in core collection (other ratios possible)

Make sure that all groups are incorporated. Small groups can contain important genetic information (e.g. about adaptation)

Using genetic markers to choose accessions

Advantages of genetic markers

- Relatively cheap
- Independent of the environment for classification
- \cdot Genetic distance and variation can be classified with good precision

Step 4/5: Strategies for choosing accesions

- \cdot H strategy \Rightarrow maximise heterozygosity
- \cdot M strategy \Rightarrow maximise allelic richness

13 / 29

The H strategy (Step 4/5)

- Estimate level of heterozygosity using a statistic like Nei's gene diversity *h* (estimated heterozygosity)
- Goal: assemble a collection in which gene diversity across markers is maximized
- \cdot Relative contribution of each group to total collection should be

h/(1-h)

where h is the diversity within the group

• Statistical approach (Step 5): Pick individuals randomly within group

14 / 29

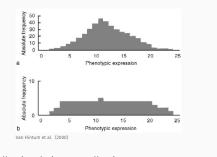
Step 4/5: The M strategy

- Focus on distinct allele types
- Maximize allelic richness
- Search for a group of accessions that maximizes the number of alleles in the core collection
- Number of accessions can be kept to a pre-defined number
- Deterministic approach (Step 5): The accessions to be included are selected by the algorithm

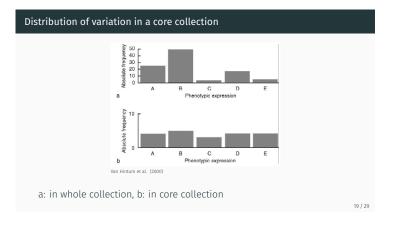
Step 5: Additional/alternative criteria for selecting accessions

- \cdot Fulfill certain criteria (e.g., agronomic characteristics)
- \cdot Maximize diversity for all the other criteria
- Inclusion of external information (quality of data, politics, etc.)

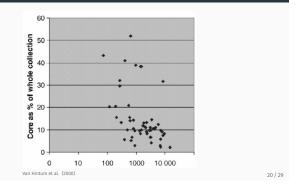
16 / 29


Other methods

- \cdot Many other methods were developed (see James (2013))
- They differ in how to quantify diversity and how to choose a possible combination of accessions.


 \Rightarrow There is a nearly infinite number of possibilities to select 2000 accessions out of a total of 20000 accessions!

17 / 29



a: in whole collection, b: in core collection

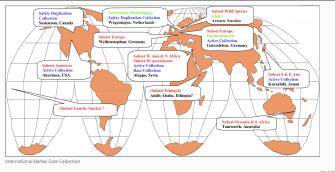
Relative sizes of core collections

Background How to establish a core collection Examples of existing core collections

Several core collections used in the 1990s

General characteristic	Specific trait	Core collection	Reference
Biotic stress resistance	Novel white mold resistance Resistance to late leafspot; tomato spotted wilt virus; Rhizoctonia limb rot Anthracnose. Fusarium wilt	Common bean Peanut Lentil	Miklas et al. 1997 Holbrook and Anderson 1995; Anderson et al. 1996; Franke et al. 1999; Holbrook 1999 Kaiser et al. 1998; Baya et al. 1997
	Cabbage aphid, Brevicoryne brassicae resistance	Brassica oleracea	Ellis et al. 1998
	Peronospora parasitica resistance Eyespot (Pseudocerco-sporella herpotrichoides) resistance	Brassica oleracea Triticum monococcum	Coelho et al. 1998 Cadle et al. 1997
Abiotic stress tolerance	Acid soil tolerance Salinity	Alfalfa Quinoa	Bouton 1996 Ruiz-Tapia et al. 1997
Chemical content	Oil and meal quality factors Fatty acid composition – epoxy and eicosenoic acids	Safflower Peanut	Bergman et al. 1997 Hammond et al. 1997
	Leaf and stem forage quality Digestibility	Medicago sativa Lolium perenne	Jung et al. 1997 Boller et al. 1998
Physiological traits	Storage response under slow growth in vitro conditions	Coffee	Dussert et al. 1997
	Turf quality, seed production Cyanogenesis and climate adaptability Nitrogen uptake and biomass accumulation	Poa pratensis White clover Potato	Johnson <i>et al.</i> 1999 Pederson <i>et al.</i> 1996 Errebhi <i>et al.</i> 1998
Other breeding-related traits	Combining ability/heterotic patterns Genotype × environment interactions	Wheat Perennial ryegrass	Spagnoletti Zeuli and Qualset 1995 Charmet et al. 1993: Balfourier et al. 1997

Some recently established core collections (CC)


Crop	CC size	% collection	Reference
Foxtail millet (ICRISAT)	~ 155	10.5 %	Upadhyaya et al. (2008)
Sorghum landraces	107	3 %	Shezad et al. (2009)
Durum wheat (from Spain)	94	17 %	Carillo et al. (2013)
Mungbean (AVRDC)	289	4 %	Schafleitner et al. (2015)
Rice (USDA)	217	≈ 1 %	Agrama et al. (2009)

23 / 29

The Inter	national Barley Core Collection	
• F¢	stablished since 1989	
20	synthetic collection	
	μ rrent size: ≈ 1300	
Struc	ture of the Barley Core Collection (2008)	
	Category	Count
	Cultivars	500
	Landraces	800
	Wild barley Hordeum vulgare ssp. spontaneum	150-200
	Other wild species (ca. 2 per species)	60 - 100
	Genetic stocks, reference material	<200

24 / 29

Institutions involved in the Barley Core Collection

25 / 29

Summary

- Core collections are small subsets of large (ex situ) collections chosen to represent the variation in the whole collection
- Many strategies exist to choose the accessions for a core collection. Main idea: Identify groups of similar accessions, represent many groups with few accessions

26 / 29

Further reading

 Van Hintum et al. (2000), available via http://www.bioversityinternational.org/nc/ publications/publication/issue/core_collections_ of_plant_genetic_resources.html

Bibliography

- Brown, A.H.D. (1989). The case for core collections. in: The Use of Plant Genetic Resources (A.H.D. Brown, O.H. Frankel, D.R. Marshall and J.T. Williams, eds.), p. 136–156. Cambridge University Press, Cambridge, UK
- Jones, H., N. Gosman, R. Horsnell, G. A. Rose, L. A. Everest, A. R. Bentley, S. Tha, et al. (2013) Strategy for Exploiting Exotic Germplasm Using Genetic, Morphological, and Environmental Diversity: The *Aegilops tauschii* Coss. Example. Theoretical and Applied Genetics Online (5 April 2013). doi:10.1007/s00122-013-2093-x.
- van Hintum, Th.J.L., Brown, A.H.D., Spillane, C., Hodgkin, T. (2000). Core collections of plant genetic resources. IPGRI Technical Bulletin **3**

28 / 29

References i