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Key question:
How are current patterns of genetic variation
linked to evolutionary processes in the past?
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Modeling of SNP data with a genealogy
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The Wright-Fisher model
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The Wright-Fisher model

• Population model for N individuals with 2N alleles; N remains constant
• Alleles in the next generation are randomly sampled from the previous generation
• Probability that two alleles have the same parent allele: 1

2N
• What is the history of a sample of n alleles backwards in time?
• Samples are small: n� N
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Discrete coalescent

• Sample size: n = 3, Population size: N = 8

• What is the genealogy/ancestral tree of the sample of alleles!
• From now on, we measure time backwards

Ancestral tree should resemble tree of Wright-Fisher model: random
tree with random mutations
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What is coalescence?

• Coalescence event: Two (or more) alleles have the same parent
allele in the previous generation

• Probability of coalescent event for two specific alleles in the
previous generation: 1/2N

• Probability of coalescent event for three or more alleles: much
smaller (ignore it)
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Coalescence theory

Key idea: Combine genealogical process with process of mutation

• All chromosomes in a sample have a evolutionary relationship that
can be expressed as gene genealogy.

• Genetic variation originates by mutation on a branch on genealogy
whose descendants inherit the mutation
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Genealogy of a sample

Rosenbert et al. Nat Rev Genet. (2002) 13 / 38

Mutations in a sample

Rosenberg et al. Nat Rev Genet. (2002)
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What is coalescence?

Probability of a coalescent event of two specific alleles:
1

2N

Sample of n alleles: How many different allele pairs are possible?
n(n− 1)

2

Probability of a coalescence event of any pair of alleles:

p ≈ 1

2N
n(n− 1)

2
=
n(n− 1)

4N
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When was the first coalescent event?

Probability of no coalescence event in the first generation:

1− p ≈ 1−
n(n− 1)

4N

Probability that the first coalescent event happened t generations ago:

P(Tn = t) ≈ (1− p)t−1p

→ geometric distribution.

Expected time Tn to first coalescence event (sample size n):

E(Tn) =
1

p
≈

1(
n(n−1)

4N

) =
4N

n(n− 1)
.

Expected time to coalescence with i alleles to i− 1:

E(Ti) ≈
4N

i(i− 1)

Coalescence time of two randomly chosen alleles: 2N generations
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Expected time to first coalescent event
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Population size: N = 10, 000
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Waiting times between coalescence events

• After one coalescence event in the sample, there are n− 1

individuals left (with high probability, ignore multiple coalescences)
• Time between first and second coalescence event: Tn−1
...

Expected (= average) time to coalescence events (N = 10, 000, n = 5)

Coalescent event Generations per N

1st coalescence event 2,000 2N/10
2nd coalescence event 3,333 2N/6
3rd coalescence event 6,666 2N/3
4th coalescence event 20,000 2N
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Coalescences in a gene genealogy
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MRCA of a sample

• MRCA: Most recent common ancestor (of the sample)
• Total time to the coalescence of the whole sample:

E(TMRCA) =
n∑
i=2

E(Ti) ≈ 4N
n∑
i=2

1

i(i− 1)
= 4N

(
1− 1

n

)
• Limit for looking back in a neutral genealogy: 4N Generations!
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Total length of a genealogy

• Corresponds to total time (generations) of all branches:

Ttotal =
n∑
i=2

iTi,

• Expected sum of random variables equals sum of expectations of
variables:

E(Ttotal) =
n∑
i=2

iE(Ti) ≈
n∑
i=2

i 4N
i(i− 1)

= 4N
n∑
i=2

1

i− 1
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Total number number of generations in a tree
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Random genealogies of 5 individuals
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Modeling neutral mutations with the coalescent

Separate the genealogical from the mutational process (neutral
mutation!)

Coalescence time Generations (approx.)

T5 5 × 2, 000 = 10, 000

T4 4 × 3, 333 = 13, 333

T3 3 × 6, 666 = 20, 000

T2 2 × 20, 000 = 40, 000

Total 83, 333

• Mutation rate µ per generation (locus-wide, per allele): Each allele
inherits a new mutation w. probability µ

• Total number E(S) of expected mutations if µ = 10−4:

E(S) = µE(Ttotal) ≈ 10−4 × 83, 333 = 8.33
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Problem: Where do we get µ and N?

• Discrete genealogy does not depend on the genealogical relations
of unsampled alleles, BUT on the total population size N. To add
mutations, we need to know µ

• N can be either the census or the effective population size
• N nearly always unknown!
• µ could be known, e.g. through mutation accumulation
experiments, but also usually unknown

Idea 1: Express all coalescent times in units of 2N
Idea 2: Estimate θ = 4Nµ from data!
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Approximating discrete genealogies: (Kingman’s) coalescent

• Rescale time: Branch length of t2N generations correspond to
branch length t in the rescaled genealogical tree

• J.F.C Kingman (1982): The discrete genealogy, for N large (N > 1000)
is very well approximated by a bifurcating tree
• Waiting time Ti for next coalescence of i ancestral lineages: E(Ti) = 2

i(i−1)

(exponentially distributed)
• Always 2 lineages coalesce

• Mutations: Put them randomly on the genealogy with scaled
mutation rate θ

2

• Probability for j mutations on a branch of length t is e− θ
2
t

(
t θ
2

)j
j(j−1)...1
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Estimating θ from data

• Remember: θ = 4Nµ, the scaled mutation rate
• Infinite sites model: each mutation hits another site
⇒ each mutation causes a polymorphism in the sample

• Sn: number of polymorphisms in the sample

Discrete WFM: E(Sn) = µE(Ttotal) ≈ 4Nµ
n∑
i=2

1

i− 1
= θ

n∑
i=2

1

i− 1

Continuous coalescent: E(Sn) =
θ

2

n∑
i=2

i 2

i(i− 1)
= θ

n∑
i=2

1

i− 1

• Watterson’s estimator: Estimate θ so that using this estimate
causes, on average, Sn mutations

θ̂w =
Sn

1 + 1
2 +

1
3 + · · ·+ 1

n−1
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Coalescent with two alleles

What is the difference (in polymorphisms) of two randomly chosen
alleles?

• Infinite sites model
• Two random alleles are expected to have a common ancestor 2Ne
generations ago.

• Total expected time in genealogy: 2× 2Ne

2N Generations PresencePast

• Add mutation rate µs per site and length of gene m:

k = 4Neµsm
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Coalescent with and without mutation

Coalescent with sample size n = 5

Rosenberg and Nordborg, Nat. Rev. Gen. 2002

Coalescent of 10 alleles/1 SNP with mutation
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Changes in population size

Random gene genealogies

a Constant population size
b Stepwise growth
c Exponential growth
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Changes in population size

Random gene genealogies
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Genealogies in the presence of a population structure

Left No population structure
Right Two populations
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Why is coalescent theory useful?

• Explicit model of the genealogical tree of closely related alleles
• Different demographic histories (e.g. exponential growth)→ different tree
likelihoods→ different distributions of genetic diversity

• Statistical inference which demographic history shaped observed diversity:
Decide which demographic model is most consistent with data and estimate
model parameters.

• Selection tests: Scan genome for regions whose genetic diversity is significantly
different from the best-fitting neutral model

• Model recombination by changing genealogical tree across genome
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Outline of coalescent simulations

The genetic diversity produced by a coalescent model can be assessed via simulation

1. Define demographic models for a locus
2. Simulate a random gene genealogy under models
3. Distribute random mutations on the genealogy with θ estimated from data (in

general: θ̂ = 2S
E(T(model)total )

)

4. Create sample of alleles
5. Calculate diversity statistic(s) of sample
6. Repeat steps 1-4 many times
7. Compare distribution under models with observed diversity of locus using
appropriate statistical test (e.g. via Monte Carlo test, Approximate Bayesian
Computation,…)
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Applications in the context of plant genetic resources

• What is the genetic relationship of modern crop species?
• At which time and where in the genome did artificial selection
occur?

• How are the heterotic pools defined and which exotic germplasm
can we use to expand them?

• Allele mining: How many alleles of a gene are contained in a gene
bank collection?

• When was a crop domesticated and how did it occur?
• In which geographic regions can be find potentially useful novel
genetic variation in land races and wild ancestors?
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Review questions

1. Describe the conceptual basis of coalescent theory. Which two
processes are investigated separately?

2. What is the probability of a coalescence event in a random sample
of two alleles in the previous generation?

3. Is the time back to the most recent common ancestor of all alleles
in a sample dependent on the size of the total population?

4. How can you estimate the mutation rate if you know the number of
polymorphisms in a sample?

5. How do demographic processes such as an increase or a decrease
of the population size affect the shape of genealogical trees?

6. What are potential applications of coalescence theory in the field of
plant genetic resources?

7. How many polymorphisms would you expect between two randomly
chosen alleles? Assume a population size of 20, 000 alleles.
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