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1 Motivation

Phylogenetic clustering is one method to group individuals together.
However, these methods often make strong assumptions, for example that
individual genotypes are related by strictly bifurcating genealogical or
phylogenetic processes. These assumptions are often violated, particularly
in crop species with their complex phylogentic history. For this reason,
different methods for the analysis of genetic similarity, relatedness and
population structure are used.

Population genetics theory provides many models for investigating
population structure and migration between populations. These models
assume, however, that the population structure is known.

In the analysis of real populations, the exact population structure is usually
unknown. A population structure can be defined in several ways:

• Geographic origin
• Phenotypic similarity
• Genetic similarity
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Table 1 – Phenotypic differences between the two North American maize inbred
lines Mo17 and B73. Source: Springer and Stupar (2007)

Frequently, geographic origin or phenotypic similarity may be used to make
reasonable assumptions about population structure, but such assumptions
can be misleading. High rates of migration or seed exchange may lead to a
mixing of genetic variation within the distribution range of a species, and the
geographic information may not indicate genetic similarity anymore.
Phenotypic differences are frequently correlated with average genome-wide
genetic distance. Phenotypically different individuals may have a high level
of genetic similarity except in a few genes that are responsible for a few
conspicuous traits. For example, more than 90% of the genetic variation in
the human population is contained within populations, and only a relatively
small proportion of genes such as those controlling skin color are highly
differentiated between human populations. On the other hand, phenotypically
similar individuals may be characterized by a high level of genetic diversity. A
case in point are maize inbred lines, such as Mo17 and B37. Phenotypically,
the look quite similar (Table 1 and Figure 1), but a F1 hybrid resulting from a
cross of the two parents has larger trait values for many traits, which
indicates heterosis that reflects genetic differences between the parents.

Since it is known that heterosis is correlated with the genetic distance
between two individuals (Reif et al., 2003), it can be used to estimate genetic
distance between individuals. The high genetic diversity between the two is
confirmed by the sequencing of the bronze region, which is highly divergent
between the two inbred lines.

To conclude, an estimation of genetic similarities is more correct than
phenotypic or geographic estimates in the context of plant breeding. Several
methods are available for inferring population structure. The most frequently
used methods are phylogenetic analysis, principle components analysis and
model-based inference.
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Figure 1 – Phenotypic differences between the two parental lines Mo17 and B73
and their hybrid offspring. Source: Springer and Stupar (2007)
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2 Phylogenetic analysis

The basics of phylogenetic analysis were described before, and shown to be
a powerful method for identifying individuals that are closely related and to
identify groups of individuals. One disadvantage is, however, that frequently
it is difficult to identify the exact number of distinct groups in a sample. An
example is shown in a study of maize domestication.

A set of 264 plants were genotyped with 99 simple sequence repeats (SSR)
as genetic markers (Matsuoka et al., 2002) and analyzed with phylogenetic
methods. The tree is characterized by large terminal branches, and only few
internal branches with significant bootstrap support (Figure 2). In summary,
the tree supports the grouping of North American groups, but the clustering
of the accessions from Mexico and the rest of Latin America is not
supported statistically. It is therefore difficult to identify accessions that are
representative for particular subpopulations based on the microsatellite
markers.

Figure 2 – Phylogenetic analysis of Americanmaize germplasmusing SSRmark-
ers. (A) Unrooted tree. (B) Rooted tree. Source: Matsuoka et al. (2002)

3 Principal components analysis (PCA)

Principle component analysis, or PCA has been used for a long time in
population genetics to cluster related groups of individuals. PCA is a method
to reduce the dimensions of complex multivariate data to identify key
components of the structure within the data in a model-free manner. Its key
feature is to project samples onto a series of orthogonal axes, each of which
is made up of a linear combination of allelic or genotypic values across
markers. The goal of a PCA analysis is to project the data on a first axis that
contains the highest proportion of variation in the data. Then it moves to the
second axis to maximize the variance for all possible axes perpendicular to
the first axis, and so on. Usually, only the first two or three axis are presented,
but a PCA analysis can comprise more axes.

To summarize, PCA
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• is a model-free and a parameter-free approach
• finds different combinations of markers such that these combinations

are uncorrelated. These combinations are called principal
components.

• explains the total variation in the data as the sum of all principal
components

• is computationally fast
• is able to identify structures in the sample caused by a diversity of

evolutionary processes

To reduce complexity among principal components, only a small number of
components that explain the highest proportion of total variation is retained
because they usually can be used to investigate the most important patterns
in the data.

3.1 A brief description of PCA

PCA was described by Karl Pearson in 1901 and it was first used in
population genetics by Menozzi et al. (1978). The goal of PCA is to take 𝑛
variables 𝑋1, 𝑋2, 𝑋3,… , 𝑋𝑛 and to find combinations of these variables that
produce indices 𝑍1, 𝑍2,… , 𝑍𝑛 that are uncorrelated. In our case, 𝑋𝑖 is marker
𝑖. Since the indices 𝑍 are uncorrelated, they measure different ‘dimensions’
in the data (i.e., they are orthogonal to each other).

The indices can be ordered, so that 𝑍1 explains the largest amount of
variation in the data, 𝑍2 the second largest, and so on.

The 𝑍𝑖 indices are called principal components. One goal of PCA is to
identify those principal components, which explain a large proportion (i.e.,
90%) of the variation in the data. If the 𝑛 original 𝑋 variables can be reduced
to a smaller number of variables, then confounding factors between data
can be excluded, such as a correlation of allele frequencies at different
markers that may be caused by the presence of population structure.

The steps in PCA are as follows:

1. Code variables 𝑋1, 𝑋2,… , 𝑋𝑛 such that they have mean zero and
variance 1.

2. Calculate the covariance matrix between all pairwise combinations of
variables. If the variables are normalized (as in step 1), the matrix is a
correlation matrix.

3. Calculate the eigenvalues, 𝜆1, 𝜆2,… , 𝜆𝑛 of each variable, and the
corresponding eigenvectors 𝐚𝟏, 𝐚𝟐,… , 𝐚𝐧.1 1 Eigenvalues and eigenfactors are fairly

complex theorems of matrix algebra, which
we do not discuss further here.

4. The coefficient of the 𝑖-th principal component are then given by 𝐚𝟏,
and 𝜆𝑖 gives its variance. Principal components can be ordered by
their variance.

More detailed technical descriptions of principal components analysis can
be found in many sources such as in Manly (2005), and there are computer
programs available to conduct PCA (or related multivariate statistics) on
genetic or phenotypic data.
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3.2 Applications of PCA in the context of plant genetic resources

The same data as in Figure 2 are shown in Figure 3. Several aspects become
obvious:

1. Accessions from geographically close regions cluster together, but we
do not have a measure of statistical significance of the association.

2. The two axes of the plot are dimensionless; only the proximity in the
two dimensions indicates similarity.

3. Maize accessions (as opposed to the close relatives) are spread
mainly over the first principal component (𝑥 axis) indicating that most
of the variation covered by the first axis is almost entirely due to
variation in cultivated maize.

4. The second principal component (y-axis) separates the wild ancestors
from cultivated maize.

5. The total amount of variation present in the first two principal
components is only 3.5 + 2.6 = 6.1% of the variation. Hence, the
overall extent of geographic structure is low and most alleles can be
found throughout the distribution range 2 2 A lack of a strong geographic structure also

causes the short internal branch lengths of
the phylogeny in Figure 2

6. The wild relatives are located close to the Mexican landraces which
supports the hypothesis that domestication occurred in Mexico. North
and South American landraces appear to have experienced largely
independent evolutionary trajectories as they are roughly ordered
according to the geographic latitude from North to South along the 𝑥
axis.

Figure 3 – Graph of the first two axes from a principal component analysis of 193
maize and 71 teosinte individual plants. The first component explains
3.5% and the second 2.6% of the total variation. Source: Matsuoka et
al. (2002)

In recent years, simulation studies and theoretical analyses showed that
despite its age, PCA is still a useful technique:

1. It is possible to interprete principal components in terms of gene
genealogies as formulated by coalescence theory and to identify
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different evolutionary processes that influenced genetic variation
(McVean, 2009).

2. It provides information about the effects of uneven sampling of
individuals on patterns of genetic variation in the sample (McVean,
2009).

3. It can be interpreted in a geographic context to identify the role of
demographic processes like bottlenecks, migration and range
expansion (Novembre and Stephens, 2008).

4. The number of relevant principal components can be evaluated
statistically to identify the number of distinct genetic clusters in the
data (Patterson et al., 2006).

Because of these characteristics, PCA will continue to play an important role
in future analyses of genetic variation.

4 Model-based inference

4.1 The STRUCTURE approach

An third approach to analysing population structure is based on an explicit
model of a population structure and evolution. The most frequently used
implementation of such a model is the STRUCTURE program (Pritchard et al.,
2000) and variants of this program that differ in their implementation and
model assumptions. The basic model of STRUCTURE assumes that alleles
within a population are in Hardy-Weinberg equilibrium and that all markers
are in complete linkage equilibrium within populations. It is assumed that
any deviation from HWE and a presence of linkage disequilibrium results
from population structure. The program tries to find population groupings of
individuals that minimize the level of disequilibrium within populations and
maximizes the fit to the expected HWE given the allele frequencies of
markers used.

The STRUCTURE algorithm uses a probabilistic approach to infer the
population structure that is most consistent with the data. Two
modifications of the model are possible. In a model without admixture, each
individual is assigned to a single population, and in a model with admixture,
individuals are allowed belong to different populations (i.e., 50% to
population 1 and 50% to population 2). To infer the number of populations,
the population is run with different values of 𝐾 , which corresponds to the
number of populations in the model. Then, for each 𝐾 , the likelihood of the
data given a value of 𝐾 , 𝑃(𝑋 |𝐾) is calculated. Inferring the number of
clusters 𝐾 that explains the data best is difficult, but several good
algorithms are available and should be used (just choosing the 𝐾 with the
highest likelihood is not optimal).3 The program then assigns each individual 3 See the tutorial of Lawson et al. (2018) for

detailsto a population. If the model with admixture is chosen, an output matrix, 𝑄 is
produced that assigns each individual proportionally to each of the 𝐾
populations. The assignment can be visualized graphically.

Each individual in the sample corresponds to a vertical line, and the
proportional population assignment is expressed by different colors.
Admixed individuals are recognizable if they show more than one color. As
an example, the STRUCTURE analysis of cultivated barley that were
genotyped with 16 SSR markers (Figure 4) (Stracke et al., 2007).
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Figure 4 – Example of a STRUCTURE analysis in barley genetic resources. The
population structure is based on the analysis of 16 SSR markers.
Source: stracke_effects_2007

The figure shows that with different values of 𝐾 the subpoplations present in
the material can be differrentiated. Vor example with 𝐾 = 2 the European
winter and spring barley types can be differentiated. The analysis also
reveals that all genotypes that contain the rym4 gene against Barley Yellow
Mosaic Virus are genetically very similar to the winter type. The analysis with
𝐾 = 6 indicates separate clusters for the 2-rowed and 6-rowed winter barley
types.

In summary, STRUCTURE has several noteworthy aspects:

• Due to the algorithm for evaluating the different groups of individuals,
STRUCTURE may have long running times, especially with large
datasets.

• Several alternative implementations of STRUCTURE are available. We
recommend using ADMIXTURE (Alexander et al., 2009), which is
availabe here http://software.genetics.ucla.edu/admixture/index.html

• Like PCA, STRUCTURE is strongly influenced by unequal sampling.
Missing populations (‘Ghost populations’) may lead to wrong
inference (Beerli, 2004).

• Simulation studies showed that STRUCTURE tends to produce the
highest level ordering of populations. Subpopulations within larger
populations need to be identified by re-running STRUCTURE with only
the individuals of a given population (Evanno et al., 2005).

4.2 The ADMIXTURE approach

Since ADMIXTURE has some favorable properties, it will be briefly explained
in the following:

http://software.genetics.ucla.edu/admixture/index.html
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Like STRUCTURE it assumes that each subpopulation is in Hardy-Weinberg
equilibrium (HWE) and all markers are in complete linkage equilibrium within
populations. It uses, however, a Maximum likelihood approach to infer
population structure.

First, individuals are rearranged to maximize fit to HWE. This step is done for
different numbers of populations, 𝐾 . Then, likelihood of data for each 𝐾 are
calculated and 𝐾 with the highest likelihood is selected.

In the next step, each individual is proportionally assigned to each
population using the following algorithm. Assume that the sample contains
genetic material inherited from 𝐾 ancestral populations, which had allele
frequencies 𝐴 = (𝐴𝑖,1… , 𝐴𝑖,𝐾 ) at the observed loci 𝑖. Then, for each
individual assume that a fraction of 𝑞𝑗 its DNA can be traced back to the
$j$th (ancestral) populations. Calculate likelihood of the genetic data of
each individual being produced from 𝐾 subpopulations with the assumed 𝑞

and 𝐴 for every possible choice of 𝑞 and 𝐴. Take the ancestry fractions 𝑞
that produce the highest likelihood.

To choose the best-fitting 𝐾 value, cross-validation is frequently used.
Cross-validation is a widely used method to infer the robustness of model
selection and parameter estimation obtained from a data set. First, mask a
proportion of the SNP matrix (e.g. SNP position 5 in individual 3,. . . ) at
random. Estimate ancestries and ancestral allele frequencies without the
masked information. Then, predict the masked entries and record the error.
After repeating these steps multiple times, select the 𝐾 value with the
smallest error averaged over multiple cross-validations.

An example of this procedure is shown in Figure 5 from a study of population
structure in amaranths (Stetter et al., 2020). It shows a substantial reduction
of the cross-validation error until 𝐾 = 3, and with higher 𝐾 values, it remains
essentially constant, although one may select 𝐾 = 7 as the best value. The
decision on which 𝐾 value to choose frequently is not only guided by
statistical arguments, but also involves biological knowledge. In this
particular case, for example 𝐾 = 7 is highly plausible because it includes
three strongly differentiated subpopulations of the wild ancestor species,
another very closely related wild ancestor species and the three distinct
grain amaranth species.

5 Synopsis population structure inference

There are many more methods for population structure available then the
ones presented, although frequently they are modifications of phylogenetic,
PCA or model-based approaches. If the data are robust and sufficient in
terms of marker numbers and sample size, the three methods converge
towards the same results, although each method allows to investigate
additional aspects of the data such as admixture or gene flow.

Figure 6 shows a comparison of the three methods, which confirms the
notion that major patterns in the data are usually found by different methods.
In this particular case, it is the strong genetic differentiation between wild
and domesticated, and between barley landraces from the western
distribution range (Near East, Europe, North Africa) and the Eastern
distribution range (Tibet).
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Figure 5 – Cross-validation plot resulting from an ADMIXTURE analysis. Usually
the 𝐾 value with the smallest absolute value is chosen as best-fitting
model. Source: (Stetter et al., 2020).

Figure 6 – Population structure of global barley accessions. Source: Zeng et al.
(2018)
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6 Key concepts

□ Population structure inference □ Principal components analysis (PCA) □Model-based inference

7 Summary

• The analysis of population structure is an important aspect of the
study of genetic resources.

• Several methods for population structure analysis exist that include
phylogenetic analysis, principal components analysis and
model-based inference such as the STRUCTURE method.

• A phylogenetic approach is usually fast and robust, however it does
not provide well defined criteria for population subdivision and the
assignment of individuals to populations.

• Principle component analysis is a fast and reliable method. It is not
based on a model of evolution, but recent improvements facilitate
statistical analysis and an interpretation of results in the context of
evolutionary processes.

• Model-based approaches such as the STRUCTURE program allow to
estimate the number of populations and to assign individuals to
different populations. Unfortunately, this method can be slow, which is
problematic for large data sets. More recent implementations have
greatly accelerated model-based structure analysis.

8 Further reading

• Lawson et al. (2018) - This is a good introduction into interpreting
STRUCTURE-type plots of population structure analyses.

• Novembre and Peter (2016) - Short review on the analysis of
fine-scaled population structure (in humans)

9 Review and thinking questions

1. Which type of information can be used to group plant genetic
resources? What is the advantage and disadvantage of each type of
information?

2. What are he major methods for population inference, and what are
there characteristics?

3. Why is it often necessary to infer the population genetic structure of
genetic resources?

4. Do self-fertilizing crops such as wheat meet the requirements of a
STRUCTURE analysis? (Hint: think about HWE).
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10 Problems

1. Both (Matsuoka et al., 2002) and Heerwaarden et al. (2011) analysed a
large panel of American maize landraces with PCA. However, the two
studies used different markers (SSRs versus SNPs). A key difference
between SSRs is that each marker tends to have multiple alleles,
whereas SNPs usually have 2 markers. Compare the PCA plots in both
studies: What do they have in commom with respect to the population
structure of American maize genetic diversity, and where do they
differ?

2. Stetter et al. (2020) investigated the genetic relationship of wild
amaranths and three species of domesticated grain amaranths from
South and Central America using phylogenetic trees, PCA and
Structure analyses. Download the publication and the supplementary
material and compare the tree (Supplement: S3), the PCA (Paper: Fig
1) and the ADMIXTURE (=STRUCTURE) analysis (Supplement: Fig S1).
Do the three methods provide similar results with respect to the
relationship of wild and domesticated amaranths? Open
Supplementary file Sfig1.html in a browser and analyse the
three-dimensional PCA plot. nWhich advantage do you see by having a
3D instead of a 2D plot?

11 In class exercises

11.1 Discussion questions

1. Which type of information can be used to group plant genetic
resources? What is the advantage and disadvantage of each type of
information?

2. Why is it often necessary to infer the population genetic structure of
genetic resources?

3. Assume you use two different methods to analyse the population
structure in your data set and the results disagree. What could be the
reason? How can you decide which method to “trust” or what can you
do?

11.2 Brasscia rapa domestication

McAlvay et al. (2021) investigated the domestication history of Brassica rapa
by analysing a diversity panel of 416 domesticated and weedy samples. They
used different methods to investigate the population structure in their data
set. Figures 1 and 2 show the results of their phylogenetic and model-based
inference and of the PCA.

1. Look only at the phylogenetic tree in Figure 1. How many clusters can
you identify? How well are the clusters or nodes supported?

2. Figure 1 also shows the results of a fastSTRUCTURE analysis (similar
to STRUCTURE) from 𝐾 = 5 to 𝐾 = 8. Briefly describe how the pattern
changes from 𝐾 = 5 to 𝐾 = 8. Can you identify any admixed samples
and how are they admixed?
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3. Compare the phylogenetic tree and the fastSTRUCTURE result in
Figure 1. Do they agree or disagree?

4. Figure 2 shows the result of the PCA. Can you identify clusters? If yes,
how many?

5. Compare the PCA to the results of the phylogenetic and model-based
inference in Figure 1. Does the PCA agree or disagree with the
phylogenetic and model-based inference? Assuming that the PCA
does not agree: What could be a possible reason?

Figure 7 – RAxML tree and fastSTRUCTURE plot indicating population structure
of Brassica rapa crops and weeds at four different values of 𝐾 .
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