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1 Motivation

The focus so far was on the analysis of genetic variation of genebank
resources. However, ultimately, the phenotype is what is important in PGR.
This includes yield, product quality, disease resistance, abiotic stress
tolerance and many other traits. Plant genetic resources are commonly
viewed as new sources of genetic variation for these traits, and for this
reason, the ability to efficiently characterize phenotypic variation of plant
genetic resources is of central importance for their further utilization.

Given the large diversity of genetic resources for a given species that may be
distributed in situ or in different ex situ genebanks, a big challenge is to find
approaches for efficient phenotyping, given that available resources are
usually limited and numbers (of genebank accessions) are large.

In recent years, the phenotyping of plants has made a rapid progress, and in
the context of PGR, the term genebank phenomics was created for the large
scale phenotyping of diverse and exotic plant material Nguyen and Norton
(2020).

The purpose of this chapter is to introduce the main strategies for large-scale
phenotypic analysis of genetic resources, provide an overview over major
phenotyping technologies and the issues associated with data storage.

1
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Figure 1 shows an integrated strategy to achieve a systematic phenotypic
analysis of genetic resources that is based on state-of-the art phenotyping
technologies, analysis methods and computational processing.

Figure 1 – A possible strategic approach for the large-scale phenotypic analysis
of plant phenotypic variation. Note that various national and interna-
tional strategies that cover various aspects of plant genetic diversity
are integrated in this approach. Source: Nguyen and Norton (2020)

2 Strategies for the analysis of phenotypic variation of
genetic resources

A key challenge in the characterization of PGR is that they are frequently
adapted to certain environmental conditions that are required to express
their "native" phenotype. For example, genotypes adapted to short days or
cold environment may not express their correct phenotyped if cultivated
under long-day or without cold vernalisation. Various strategies were
developed to account for such genotype x environment interactions that
interfere with a proper phenotypic evaluation.

2.1 Direct estimation of phenotypic variation

A simple approach is to cultivate diverse genetic resources in multiple
locations with different environmental parameters and then estimate the
extent of GxE variation for each genotype. Then, phenotypic clustering can
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be used (possibly in combination with genotypic clustering or information
about the geographic clustering) to identify the optimal environment for
phenotypic analysis of a trait in a given set of genotypes. For example, it the
trait of interest is grain yield, it does not make sense to cultivate a genotype
that is adapted to short days in a long-day environment because it may not
reach maturity and therefore grain yield can not be determined.

Figure 2 shows a maize elite hybrid variety created for cultivation in Central
Europe. Since it is adapted to the European climate and photoperiod and
was bred for biomass production (i.e., a large plant height due to a long
vegetative growth phase and late flowering), it is very large, whereas in Peru
in a short day environment, the flowering time is much earlier and plant
height is reduced.

Figure 2 – Genotype by environment effects in a modern maize hybrid (GAVOTT
of KWS). In Germany plant height is much than in Peru. Photo: Walter
Schmidt, KWS SEED SE

The opposite effect is observed with a Peruvian landrace that is cultivated in
Europe (Figure 3). In their native cultivation environment under short-day
conditions, plant height is normal with a height of about 3 m, whereas under
the the long-day conditions of Central Europe, its height is more than 5 m
and due to a very late flowering, the maize cobs may not be fully developed
at the end of the growing season.

Since flowering time and grain yield are strongly correlated in maize, for
example, these examples show that the cultivation environment plays an
important role in the evaluation of plant genetic resources.

2.2 Crosses with a common tester

One approach to mitigate the effects of allelic diversity in plant genetic
resources is to cross exotic and potentially nonadapted genetic resources
with a tester and therefore buffer or reduce the strong effects of an exotic
background for the evaluation of phenotypic variation.
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Figure 3 – Comparison of plant height of a Peruvian maize landrace that was
cultivated under the short-day conditions in Peru (left) and Switzerland
(right). Photo: Walter Schmidt, KWS SEED SE.

The advantage is that allelic effects of PGR can be evaluated in a common
genetic background. A disadvantage of this approach is that F1 lines
resulting from such a cross are highly heterozygous and therefore further
work (i.e., self-fertilizations) are needed to identify genes of interest and to
make them genetically s(i.e., for seed production and evaluation in more
environments), because any offspring populations are segregating for the
trait.

This F1 approach was taken by Romero Navarro et al. (2017) who crossed
one individual each of 4,471 maize landrace populations originating from
Central and South America with a single tester and then evaluated the
resulting F1 offspring at multiple location. All landraces were also genotyped.
A genome-wide association study revealed multiple genes controlling
flowering time. There was a strong overlap of SNP polymorphisms which are
associated with flowering time and SNPs that are associated with altitude at
the site of origin of a landrace and with the latitude of the origin of the
landrace, respectively. This is a strong indication of local adaptation of
maize landraces and explains the strong GxE effects demonstrated in the
previous section.

Figure 4 – Analysis of phenotypic variation of a large collection of maize lan-
draces. Left: Geographic origin and altitude of collection site of
3,633 maize landraces with a know geographic coordinates. Right: a)
Genome-wide association study for the trait 'time to female flowering'
(in days). b) and c) Venn diagrams showing the overlap of significantly
associated SNPs with flowering time and latitude (b) and altitude (c),
respectively. Source: Romero Navarro et al. (2017)
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2.3 DH lines and crosses with a tester

The management and analysis of phenotypic variation differs between
self-fertilizing and outcrossing species. In self-fertilized species, the level of
homozygosity is usually high and variation within populations limited,
although this may not be the case in species with some outcrossing. For
example, although amaranth and quinoa are mainly self-fertilizing,
outcrossing rates of 1% to 20% have been observed, which allows to
maintain substantial heterozygosity in a population. However, by multiple
generations of self-fertilization genetically slines with little inbreeding
depression can be generated and analysed. In contrast, outcrossing species
are frequently self-incompatible or show substantial inbreeding depression,
which can be expected to be high in genetic resources such as landraces.
For this reason, it has been proposed to create Doubled Haploid (DH) lines
directly from exotic genetic material and use this for both the conservation
of genetic diversity and their phenotypic evaluation. DH lines have the
advantage that they can be easily propagated and therefore maintained
stably and also crossed with different testers to evaluate there genetic
values in different backgrounds.

This approach was demonstrated for seven European maize landraces in a
series of studies. First, DH lines were created from various landraces by
crossing them with an inductor to create haploid plants whose genomes
were subsequently doubled using colchicine treatment (Melchinger et al.,
2017). A comparison of the success rate of DH production between
landraces and commercial hybrids shows the effect of the genetic load,
because the overall success rate (OSR) was on average more than two times
higher with the elite crosses than with the landraces (Table 1) and
statistically significant (𝑃 < 0.01)

Table 1 – Comparison of the success rates of DH production in five of the seven
European maize landraces and elite material. 𝑁𝑆 : Number of seeds
harvested from induction crosses; 𝑁𝐷1

: number of DH lines in the
𝐷1 generation; OSR: Overall success rate of DH production. Source:
Melchinger et al. (2017)

Source Germplasm NS ND1 OSR

Landraces (LR)
Gelber Badischer(GB) 113,596 59 3.76
Rheinthaler (RT) 44,557 43 4.75
Strenzfelder (SF) 41,779 61 4.83
Satu Mare (SM) 114,712 108 4.52
Walliser (WA) 68,356 117 4.99
Sum/mean 383,000 388 4.57
Elite crosses (EC) 35,327 137 11.55

Since the genetic load of the landraces is expected to be high, there may be
a strong selection against recessive deleterious variation and therefore a low
success rate in the production of DH lines as well as a loss of genetic
variation in the population of DH lines compared to the the original landrace
population. The lower success rate in DH production was confirmed, but not
the loss of genetic diversity.
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Five of the seven landraces were genotyped with 28,133 SNP markers and
Nei's gene diversity as measure of genetic diversity was calculated. A
comparison between the original landraces and the DH lines show that there
is no decrease in this measure of diversity (i.e., the expected proportion of
heterozygotes under HWE) suggesting that DH lines harbor the same
amount of genetic variation than the original outcrossed genotypes of the
landraces (Table 5).

Figure 5: Nei's gene diversity 𝐻𝑠 in the origi-
nal landrace and the doubled haploid lines in
the 𝐷1 generation averaged over 28,133 SNP
markers. Source: Melchinger et al. (2017)

Then, these DH lines were crossed with testers and evaluated in different
environments (Brauner et al., 2019). The results for the trait 'grain dry matter
yield', which were evaluated in eight environments are shown in Figure 6. The
phenotypic variation of the landrace populations is comparable to the
commercial hybrids. A correlation of grain dry matter yield with total yield
shows that the DH lines tend to show a higher level of variation than original
(heterozygous) genotypes of the landraces. The correlation also shows that
the total average dry matter yield of the commercial hybrids is vastly
superior over the hybrids created from the DH lines, although individual lines
from the EF line appear to have high grain yield.

Figure 6 – Comparison of DH lines from six European maize landraces in a
testcross with a Dent pool line with nine commercial hybrids (CH) for
grain dry matter content and grain yield. (A) Differences between the
landrace populations and commercial hybrid. (B) Correlation of grain
dry matter content and grain yield. Source: Brauner et al. (2019)

However, a re-analysis of the genetic diversity revealed that in particular rare
alleles are lost in the DH lines in comparison to the original landrace as
indicated by a lower haplotype diversity in the DH lines than in the original
landrace (Figure 7). This suggests that DH lines are only suias stores of
native genetic diversity if large numbers of DH can be produced that capture
a large number of rare alleles.

2.4 Multiparent mapping populations for evaluating PGR

A more advanced version of the 𝐹1 based approach described above is to
cross exotic genetic resources with either a single or a few advanced or elite
tester lines and then to create recombinant inbred lines by repeated
generations of self fertilizations or by creating doubled haploid lines from
the 𝐹1 generation of such crosses. One such design is the nested
association mapping (NAM) panel which was first described by Yu et al.
(2008) and whose mating scheme is shown in Figure 8

A main disadvantage of this design is that the number of exotic parents that
can be crossed and evaluated is limited (usually to tens of genotypes)
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Figure 7 – Comparison of haplotype diversity in European maize landraces. The
haplotype diversity is calculated on a larger number (ca. 600,000)
SNP genotypes than Nei's gene diversity in Table 5. Source: Zeitler et
al. (2020)

Figure 8 – Diagram of genome reshuffling between 25 diverse founders and the
common parent and the resulting 5,000 immortal genotypes. Due to
diminishing chances of recombination over short genetic distance and
a given number of generations, the genomes of these recombinant
inbred lines (RILs) are essentially mosaics of the founder genomes.
×, crossing; ⊗, selfing; SSD, single-seed descent. Source: Yu et al.
(2008)
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because a large number of offspring (i.e., resulting lines) need to be
maintained and evaluated in order to characterize the genetic and
phenotypic diversity segregating among the offspring. For this reason, NAM
and related mating designs such as multiparent advanced generation
intercross populations (MAGIC) are more suifor the precision mapping of
genes based on phenotypic evaluation and subsequent introgression into
elite material rather than a large scale evaluation of plant genetic resources,
i.e., from gene banks (Figure 9). Since such lines are genetically stable
(“immortal”), they need to be genotyped only once, but can be distributed to
many researchers and evaluated in multiple environments and for multiple
traits. Furthermore, since such designs include more than two parents the
overall level of genetic diversity is rather high and they can be evaluated for
multiple traits. For this reason, NAM and MAGIC designs were created for
many crops including maize, wheat, barley, soybean, rice Gage et al. (2020;
Gireesh et al., 2021). For an example of identifying candidate genes for
salinity tolerance in wild barley NAM, see Saade et al. (2016).

Figure 9 – Comparison of different types of mapping populations. Recombinant
inbred line (RIL) populations are usually made of two parents. Nested
association mapping (NAM) populations consist of numerous RIL
families with a common parent. Multiparent advanced generation
crosses (MAGIC) populations have usually 8 to 24 parents (depending
on the specific design), and association panels for genome-wide as-
sociation studies (GWAS) consist of hundreds of individuals. Source:
Gage et al. (2020)

Generally, using NAM or MAGIC crossing schemes dynamic gene pools as
were presented in the context of in situ conservation can be created.

2.5 Analysis of phenotypic variation in the field versus controlled
environments

The characterization of phenotypic variation requires to take a decision
where and how to cultivate plant genetic resources to achieve the desired
objectives. On first glance such a decision may appear easy, but one may
argue that many aspects need to be taken into account. These aspects are
resources required and available (e.g., field sites, greenhouse space, growth
chambers), genotype x environment interactions of traits investigated or
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Table 2 – Correlation of phenotypic measurements between lab to field, and
between years on the same field for the same genotypes and traits. The
difference in the overall correlation for the P50 percentile is significant.
Source: Poorter et al. (2016a)

phenotyping equipment required. Traits with a low GxE interaction can be
phenotyped independent of the environment, other traits such as root traits
may require specific equipment and set ups that can not achieved in a field
trial but are available in a greenhouse settings.

In particular the decision of whether to characterize phenotypic variation in
the field versus a controlled environment such as greenhouses or growth
chambers is important.

A comparison of phenotyping studies for the same trait in controlled versus
field environments revealed that the correlation of trait values is rather low
and highly variable between traits. Both types of environments differ in many
variables that can have nonlinear and interaction effects. A very
comprehensive meta-analysis found that the correlation of phenotypic
values between the field and the lab (controlled environment) was only
𝑟2 = 0.26 (Poorter et al., 2016a). This result shows that phenotypic
evaluation in controlled environments should consider whether or not it is
necessary to simulate conditions in the field as closely as necessary for
certain types of traits, in particular those with a high GxE interaction.
However, one also needs to account for variation in the field, e.g., year to year
variation in the same field, which has profound effects of phenotypic
evaluation. A meta analysis showed that such a correlation is even lower
than a comparison from lab to field (Table 2).

An example of the discrepancies is evident in the analysis of mildew
tolerance in quinoa, Chenopodium quinoa. One study investigated mildew
tolerance in a field experiment with 310 genebank accessions representing
quinoa diversity where infection was natural with unknown pathotypes
(Patiranage et al., 2020). A second study was based on greenhouse
experiments in which a smaller number of different genebank accessions
was inoculated with a single, well defined isolate of mildew and the
susceptibility was scored with different means (Colque-Little et al., 2021). In
summary, with respected to about all possible aspects the two studies
differed (also in the location, experimental design, personnel conducting the
experiment), but evaluated the same trait (tolerance against mildew).
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Figure 10 – Comparison of experiments for the evaluation of mildew tolerance
in genetic resources. (A) Controlled inoculation in the greenhouse of
the University of Copenhagen, Denmark. Source: Colque-Little et al.
(2021) (B) Field experiment with natural inoculation at the University
of Kiel, Germany. Source: Patiranage et al. (2020)

In both studies the goal was to identify genes involved in mildew tolerance
that may be useful in quinoa breeding. A comparison of the resulting GWAS
results shows that there is no overlap between the two studies (Figure 11).
Whereas the field trial revealed several candidate genes with high statistical
power in genomic regions that may harbor disease resistance genes, the
greenhouse study identified only one significant polymorphism with marginal
statistical significance, which is located in the same region as the most
significant SNP in the field study.

This comparison reveals that phenotypic characterization of plant genetic
resources usually requires further validation by further genetic mapping or
functional analyses. In this particular case, the higher statistical significance
of the field trial is likely more trustworthy because of a almost five times
larger number of genebank accessions tested, although the overlap of the
most significant hit in both studies can be considered a confirmation of the
results.

Controlled environments, however, may have an important advantage over
field trials because they can be used to create conditions that allow to map
adaptive phenotypes (e.g., the role of photoperiod, light composition and day
length in time to flowering) or to synchronize the flowering of genetically
diverse material in order to facilitate crossing of diverse genotypes, which
would not be possible under field conditions. The manipulation of growing
conditions, in particular light and temperature, to reduce generation time and
synchronize flowering time is called speed breeding (Wanga et al., 2021;
Watson et al., 2018). Although this principle has been described a long time
ago, modern LED technologies and growth chambers greatly facilitate the
use of this approach in both the characterization of phenotypic traits and
breeding purposes. Detailed protocols were developed for multiple crops
(Ghosh et al., 2018). For example, the manipulation of the ratio of red and
far-red light with other colors is able to considerably shorten the time to
flowering for amaranth (Figure 12), rice and soybean (Jähne et al., 2020).

Figure 12: Example of an application of speed
breeding. The flowering time of amaranth
genotypes can be substantially reduced by
variable proportions of red and far-red light.
Source: Jähne et al. (2020).
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Figure 11 – Comparison of GWAS for tolerance against downy mildew (/Per-
onospora/) in quinoa genebank accessions. (A) Results from a field
study at a single location in a single year based on natural infection
(𝑛 = 310). Patiranage et al. (2020) (B) Results from a greenhouse
study in a replicated trial (𝑛 = 66). Colque-Little et al. (2021). Note
that the labeling of the chromosomes differ between both studies,
but themarginally significant peak in (B) is located in the same region
as the highest peak in (A) on chromosome A2.
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3 Rapid development of phenotyping technologies

The phenotypic analysis of plants in general, but also more specifically, plant
genetic resources is making great progress. A new field of plant phenomics
is emerging, which makes used of very different technologies. They include
classical phenotyping via image analysis, but also more advanced
technologies such as spectroscopy with various methods, gene expression
studies (transcriptomics), proteome analyses (proteomics), metabolic
analysis (metabolomics), the analysis of "difficult" phenotypes such as roots
or microscopic phenotypes such as the shape and density of leaf stomata
using microscopy and various field based approaches facilitated by
unmanned aerial vehicles (UAVs or drones), airplanes or satellites
(Figure 13). In the context of plant genetic resources, the challenge is to
develop scalable phenotyping instruments that are able to analyse a diverse
and high level of phenotypic variation.

In addition to the generation of phenotypic data, their analysis also provides
new challenges. First, large amounts of data are created, e.g., high density
spectra, high-resolution pictures or fine-grained time-resolved
measurements that require substantial computational competence and
resources in the storage and analysis. New statistical and machine learning
approaches, such as Deep Learning using Neural Networks are rapidly
gaining acceptance and are widely used.

These developments need to be integrated into classical breeding paradigms
because they require specialized domain knowledge (e.g., advanced
statistics and computer science) but also allow new possibilities such as the
characterization of new phenotypes, which my contribute to the
identification and utilization of useful genetic variation.

Taken together, these technologies allow to overcome the plant phenotyping
gap. This term was coined in response to the rapid development of
genomics technologies, which allows to characterize genetic diversity in
large numbers of genetic materials, whereas for a long time the phenotypic
analysis was still limited to few traits and was resource intensive.

In the following one example of large scale phenotyping in the context of
genebank phenomics is presented to demonstrate that large-scale analysis
of phenotypic variation. The maize genebank of Peru was established in the
1960s and 1970s by collecting ca. 3,500 maize landrace populations from
farmer's fields. All of these accessions with multiple plants per population
were photographed together with a ruler. In 2015 the complete set of
genebank accessions was cultivated again, and ca. 1,600 accessions still
germinated. These were photographed again. Using a small training set of
200 or 1,000 annotated maize cob pictures, a Deep Learning model based on
a co-called Mask R-CNN (CNN: Convolutional Neural Network) was trained to
recognize the maize cobs and the ruler present on each photo (Figure 14). A
comparison with other models showed that this variant of deep learning is
vastly superior to classical mode of image analysis and another (simpler)
deep learning method.

Using the trained model, almost 20,000 maize cobs were analysed and
automatically measured. One initial analysis identified genebank accession
that showed a high level of phenotypic variation to identify heterogenous
genebank accessions. The PCA plot of within image Z-scores (a measure of
phenotypic variation within genebank accessions) reveals that mean cob
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Figure 13 – Overview of the different types and scales of plant phenotyping from
the temporal and spatial scales and the approaches used for each
sacle. Source: Casto et al. (2021)
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Figure 14 – Genebank phenomics using deep learing. A trained Mask-R CNN
neural net model recognizes maize cobs and rulers in images of
genebank accessions. The segmentation of cobs and rulers in the
images can then be used to automatically measure size and color
parameter of genebank accessions. Source: Kienbaum et al. (2021)

color and not morphological parameters are the main determinants of
variation within genebank accessions.

Figure 15: Multivariate clustering of 19,867
maize cobs based on a principal component
analysis of 8 phenotypic traits derived from
maize cobs: cob diameter, cob length, cob
ellipticity, cob asymmetry, aspect ratio, mean
blue color, mean read color, mean green
color. The color of each dot corresponds to
the average color of the maize cob. Kien-
baum et al. (2021)

The advantage of Deep Learning approaches is that (at least in the context
of image analysis) they tend to be very robust and applicable in different
circumstances. This is the reason why Mask-R CNN and related deep
learning methods are now used for multiple applications in plant
phenotyping, e.g., Yang et al. (2021).

4 The challenge of data storage and annotation

The large amount of data created by phenotyping applications and any
information derived from these data is a big challenge at many levels. In the
following the key challeneges will be mentioned, but not discussed in greater
detail.

Ownership of data: For scientific publication data are ideally public,
however, since data are now becoming increasingly of commercial
value, issues about ownership and freedom to use arise that require
legal regulations

Data storage: Data need to be stored in a digital form which requires
resources appropriate data structures and software tools to read,
process and synthesize data using application programming
interfaces (API). Various initiatives have been initiated to tackle these
problems, but solutions such as Breeding API (Selby et al., 2019) are
only emerging slowly.

Training of personnel: The field of data science is moving very fast, and the
training of researchers and plant breeders needs to accommodate
these rapid changes. Data scientist need to know and learn multiple
new approaches for working with these data because traditional skills
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may not be sufficient anymore and new ways of collaboration need to
be established.

Data extraction and usage: The data extraction, formatting and synthesis
from different sources needs to be automated. It is not sufficient
anymore to only publish the data, but also tools and APIs that are
tailored to specific big datasets.

5 Key concepts

□ Genebank phenomics □ Nested association mapping (NAM)
□Multiparent advanced generation intercross (MAGIC) □ Phenotyping bottleneck
□ Doubled haploid lines

6 Summary

• Plant phenotyping is a very active field of plant research and will have
a major impact on the description and utilization of plant genetic
resources.

• The large scale phenotyping of PGR is facilitated by different
populations used or created for phenotyping that accommodate
different amounts and types of variation.

• The rapid development of phenotyping technologies facilitates the
high-throughput and precise characterization of PGR among spatial
and temporal scales.

• Novel phenotypes can be defined by using new technologies that may
be interesting for downstream applications.

• Data storage and analysis are of major importance for plant
phenotyping and creates new challenges in the training of personnel

7 Further reading

• Poorter et al. (2016b) - Very important analysis of phenotyping in the
field and controlled environments

8 Review and discussion questions

1. Despite the differences in phenotypic characterization in the field and
the lab: Can you give pro's and con's for an evaluation of plant genetic
resources in the field and in the lab?

2. What are the advantages and disadvantages of the different
populations created for characterizing phenotypic diversity (i.e., NAM
or MAGIC populations). Are advantages and disadvantages different
for the different uses, e.g., identification of genes vs. utilization of
genetic resources for breeding?

3. Can you imagine novel phenotypes that may become possible by any
new -omics or phenotyping technologies?
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4. Which advantage do you see in the definition of new phenotypes that
become possible my the new phenotyping methods?

5. Which main challenges do you recognize in the training of students to
accommodate the current developments in plant phenotyping, data
storage and data analysis?

6. Do you still see a future for the "breeder's eye" in such a
technology-driven development of plant phenotyping?
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