
R packages for this computer lab
Module: Plant Genetic Resources (3502-470)

Karl Schmid, University of Hohenheim

23 May 2025

Table of contents

1 Identification of outlier windows 5

For this computer lab we will need the R package:

• pegas to perform the analyses

Install and load the package1. It also installs the package ape, which is a 1 Website for this package: Link

dependency and provides several functions for the population genetic
analysis of the data2. 2 Website for this package: Link

install.packages("pegas") # run this only once on your computer

library(pegas)

The data set

The data set for this exercise consists of 148 genotyped individuals that
were prepared in the previous exercise. As a reminder the data span a region
of 3 Megabases on chromosome 1 of the maize genome. The individuals
belong to teosinte (the wild ancestor of cultivated maize), maize landraces
and modern maize varieites. First, load the data set that you saved as an
Rdata objects in the first computer lab:

load("data/zea_snps.RData")

load("data/teosinte_acc.Rdata")

load("data/landraces_acc.Rdata")

load("data/varieties_acc.Rdata")

Genetic diversity

We will look at the genetic diversity within each of the three data sets.

The function seg.sites returns the indices (positions) segrating sites in a
data frame, which can then be counted using the length() function.

First we calculate the number of variants, i.e. the number of segregating sites
𝑆. For a nice presentation of the output, a data frame is constructed and it is
converted to a nice-looking table using the knitr::kable() function

Calculate the number of segregating sites for each pool

teosinte_seg <- length(seg.sites(zea_snps[teosinte_acc,]))

landraces_seg <- length(seg.sites(zea_snps[landraces_acc,]))

varieties_seg <- length(seg.sites(zea_snps[varieties_acc,]))

1

https://emmanuelparadis.github.io/pegas.html
https://emmanuelparadis.github.io/

Plant Genetic Resources (3502-470) Page 2

Create a data frame with the results

result_table <- data.frame(

Pool = c("Teosinte", "Landrace", "Variety"),

`Segregating sites` = c(teosinte_seg, landraces_seg, varieties_seg)

)

Display the table nicely using knitr::kable()

knitr::kable(result_table, caption = "Segregating Sites by Pool")

Next, we calculate the nucleotide diversity 𝜋:

n_snps <- ncol(zea_snps) # get the number of SNPs in the 3 MB long region

pi_teosinte <- (nuc.div(zea_snps[teosinte_acc,])*n_snps)/3000000

pi_teosinte

pi_landraces <- (nuc.div(zea_snps[landraces_acc,])*n_snps)/3000000

pi_landraces

pi_varieties <- (nuc.div(zea_snps[varieties_acc,])*n_snps)/3000000

pi_varieties

The reason why we first multiply with the reported number of variants in this
data set and then divide by the sequence length is that we want to have a per
site estimate and the original vcf input data file did only contain the variant
positions.

� Tip

It is easy to compare the effect of correcting for the length of the
sequenced region.
Compare the output of the command
nuc.div(zea_snps[teosinte_acc,]) with the output of ‘pi_teosinte
<- (nuc.div(zea_snps[teosinte_acc,])*n_snps)/3000000“
Why is the output of the first command higher than of the second
command?

Please review the formula to calculate nucleotide diversity that you learned
about in the lecture.

ñ Exercise

Modify the above code to include the value of pi as another column in
the table.

ñ Question

• Which data set has the highest genetic diversity? Which one the
lowest?

• Can you come upwith an explanation of the differences in genetic
diversity?

Sliding window analysis

The above calculation gives an average nucleotide diversity for the whole 3
megabases long region. There is, however, the expectation that there is
some variation in genetic diversity within this region. We therefore use a

Plant Genetic Resources (3502-470) Page 3

sliding window approach to calculate nucleotide diversity in windows of
10000 bp that slide along the chromosomes in steps of 100 bp.

Before we can start with the sliding window analysis, we have to get the
position of each polymorphism. Unfortunately, the DNAbin object does not
store the chromosome and position on the chromosome in the object, but it
is encoded in the column name of the object because the vcfR package
reads the chromosome number and position from the vcf file and then
encodes it. Therefore, S1_265004016 reflects the position 1_265004016 on
chromosome 1.

We have extract from the column names of the DNAbin object and then
extract the position and chromosome.

First, load the stringr library for string manipulation.

install.packages("stringr") # run only once

library(stringr)

To be able to analyse different populations, we define a large function
analyse_sliding_window. The function first creates windows and then
iterates over them. Instead of using a for loop for the iteration, which is slow
in R, we use the sapply function to serially apply a function to the data.

window_size <- 10000 # Window size: 10,000 base pairs

step_size <- 10000 # Step size: 100 base pairs

analyse_sliding_windows <- function(snp_data, window_size, step_size) {

Get the polymorphism names from the DNAbin object

polymorphisms <- colnames(snp_data)

Use regex to extract the chromosome and position components from each name.

The regex "ˆS(\\d+)_(\\d+)$" captures two groups: chromosome (group 1) and position (group 2)

matches <- str_match(polymorphisms, "ˆS(\\d+)_(\\d+)$")

Convert the captured values to numeric

chromosome <- as.numeric(matches[, 2])

position <- as.numeric(matches[, 3])

Get starting and end positions on the chromosome.

Here we assume the positions are sorted in ascending order.

startpos <- position[1]

endpos <- tail(position, 1)

Generate the starting positions for the sliding windows

starts <- seq(startpos, endpos - window_size + 1, by = step_size)

Calculate the midpoint for each window (used as the position indicator)

midpoints <- starts + floor(window_size / 2)

Calculate nucleotide diversity per nucleotide for each window.

Here we divide the nucleotide diversity (calculated by nuc.div on the window) by the window size.

nuc_diversity <- sapply(starts, function(start) {

Define the end position of the window

Plant Genetic Resources (3502-470) Page 4

end <- start + window_size - 1

Subset polymorphisms based on chromosome 1 and the current window

selected_polymorphisms <- polymorphisms[chromosome == 1 & position >= start & position <= end]

Extract the corresponding columns from the DNAbin object

selected_snps <- snp_data[, selected_polymorphisms, drop = FALSE]

Calculate nucleotide diversity over the window (using nuc.div from the pegas package)

diversity <- nuc.div(selected_snps)

Return the nucleotide diversity per nucleotide

diversity / window_size

})

Combine midpoints and nucleotide diversity values into a data frame

results_df <- data.frame(

Midpoint = midpoints,

Nucleotide_Diversity = nuc_diversity

)

return(results_df)

}

Run the function for the complete dataset and then plot the diversity along
the chromosome.

zea_snps.div <- analyse_sliding_windows(zea_snps, window_size, step_size)

teosinte_snps.div <- analyse_sliding_windows(zea_snps[teosinte_acc,], window_size, step_size)

landraces_snps.div <- analyse_sliding_windows(zea_snps[landraces_acc,], window_size, step_size)

Now plot the level of diversity along the chromosome. We use ggplot2 for
the plotting, and for this purpose, we create a dataframe with the diversity
values. Since the midpoints are the same for all, we can easily combine them
into a new dataframe for the plotting

df_plot <- data.frame(

Midpoint = zea_snps.div$Midpoint,

Zea_Div = zea_snps.div$Nucleotide_Diversity,

Teosinte_Div = teosinte_snps.div$Nucleotide_Diversity,

Landraces_Div = landraces_snps.div$Nucleotide_Diversity

)

Then plot the dataframe

library(ggplot2)

ggplot(df_plot, aes(x = Midpoint)) +

#geom_line(aes(y = Zea_Div, color = "Zea Diversity"), size = 1) +

geom_line(aes(y = Teosinte_Div, color = "Teosinte Diversity"), size = 1) +

geom_line(aes(y = Landraces_Div, color = "Landraces Diversity"), size = 1) +

labs(x = "Midpoint", y = "Nucleotide Diversity", color = "Group") +

theme_minimal()

Plant Genetic Resources (3502-470) Page 5

ñ Exercise

1. Add the code for the varieties to plot the variation along the
chromosome.

2. Which general patterns do you recognize with respect to the
overall levels of diversity and the variation in genetic diversity
along the chromosome in the different pools of the sample?

3. Which explanations can you come up with to explain the high
variation of diversity levels along the chromosome?

4. Can you think of any biases with respect to the total levels of
diversity and the levels of diversity in individual genomic regions?
(Hint: Think of the effect of the filtering during data preparation
or in later stages of the analysis)

1 Identification of outlier windows

The comparison of diversity levels of individual windows between pools may
provide further insights.

We can use a scatterplot and a linear model to identify windows, whose level
of diversity differs strongly between pools.

Calculate the maximum value for the limits (ignoring NA values)

max_val <- max(c(df_plot$Teosinte_Div, df_plot$Landraces_Div), na.rm = TRUE)

ggplot(df_plot, aes(x = Teosinte_Div, y = Landraces_Div)) +

geom_point() +

Add the x = y line (dashed line)

geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "gray") +

Fit and add the linear model line without confidence interval (blue line)

geom_smooth(method = "lm", se = TRUE, color = "blue") +

Set x and y limits the same based on the maximum value

scale_x_continuous(limits = c(0, max_val)) +

scale_y_continuous(limits = c(0, max_val)) +

labs(

x = "Teosinte Nucleotide Diversity",

y = "Landraces Nucleotide Diversity",

title = "Scatterplot of Nucleotide Diversities: Teosinte vs Landraces",

subtitle = "Dashed line: x = y | Blue line: Linear Model Fit"

) +

theme_minimal()

ñ Exercise

1. Make a similar plot for the comparison of Landraces versus
Varieties diversity.

2. Interprete the resulting plots. What to the lines indicate?
3. Which approach would you take to (statistically) identify and

further characterize outliner windows?
4. Which process could explain the presence of the outlier windows?

	Identification of outlier windows

