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The purpose of this computer lab is to introduce the use of coalescent
theory for the analysis of genetic diversity. In particular we focus on using
simulations to introduce the key concepts. Coalescent simulations make
use of the coalescent theory introduced in the lecture. They are frequently
used to simulate data under certain models and to compare the simulated
data to results from empirical data. We will use the software ms (Hudson,
2002) as implemented in the R package phyclust to conduct coalescent
simulations and to compare the results to theoretical expectations.

R packages for this computer lab

For this computer lab the following R packages are required:

• phyclust

• gap

• pegas

library(phyclust)

library(gap)

library(pegas)

Makes sure that the packages are installed and loaded.

Simulation of coalescent trees

All simulations will be conducted by using the command ms from the
package phyclust. It has three arguments

ms (number of alleles, number of simulated trees, further ms

arguments)

Additional arguments are always provided as a single text string (i.e., “text”).
For more information check ?ms.

We start with looking at several coalescent trees. Since coalescent trees are
randomly generated, there might be huge differences between trees. The ms
option to generate trees is "-T".

mstrees <- ms(6, 6, "-T") # produces trees in Newick format

par(mfrow = c(2,3))

mstrees <- read.tree(text = mstrees, skip = 3) # Reads in trees, produces a list of trees
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for (tr in mstrees) { # Function to plot trees

plot.phylo(tr)

add.scale.bar()

}

par(mfrow=c(1,1))

ñ Exercise

1. Use the ?ms function to find out what the parameter -T means.
2. Compare the trees. Do they all have the same height (time back

to the MRCA)? Hint: Look at the scales of the trees
3. Do you observe differences between the internal and the terminal

branches? How can they be explained with coalescent theory?

In class we discussed the effect of different processes such as population
growth, selection, etc. on the shape of a gene genealogy. To study the effect
of gene genealogies, we run a few simulations.

ñ Exercise

1. Check out the parameter -G in the ms command. How well is it
defined?

2. Copy and paste the above function, add the -G option.
3. Choose different values of G and check how the shape of the

gene genealogy is changing.

mstrees <- ms(6, 6, "-T -G 1000") # produces trees in Newick format

par(mfrow = c(2,3))

mstrees <- read.tree(text = mstrees, skip = 3) # Reads in trees, produces a list of trees

for (tr in mstrees) { # Function to plot trees

plot.phylo(tr)

add.scale.bar()

}

par(mfrow=c(1,1))

Coalescent times

By assuming a population of size 𝑁 , the time (in generations) to the most
recent common ancestor (MRCA) for a sample of 𝑛 individuals can be
calculated as:

𝐸(𝑇𝑀𝑅𝐶𝐴) = 4𝑁(1 −

1

𝑛

).

We can calculate the expected total length of the sample’s genealogy as:

𝐸(𝑇𝑐) = 4𝑁

𝑛

∑

𝑖=2

1

𝑖 − 1

.

We will now compare the theoretical mean values with simulations under the
coalescent model. This can be done with the option -L.

Note that we also specify a mutation rate, although ms doesn’t need it to
compute the genealogies and the mutation rate/structure does not have any
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influence on the simulated genealogical trees. This is just done so that we
can easily transform the data using read.ms.output.

The parameter -t gives the value of 𝜃 = 4𝑁𝑒𝜇 used in the simulation.

mslengths <- ms(10, 1000, "-t 1 -L") # Generate coalescent trees and compute their lengths

mslengths <- read.ms.output(mslengths, is.file=FALSE) # Transform the data

mslengths <- mslengths$times # Just keep the lengths

par(mfrow = c(1,2))

hist(mslengths[,1], xlab="Time back to MRCA",main="")

abline(v=mean(mslengths[,1]),col="blue",lwd=2)

hist(mslengths[,2], xlab="Total length of the genealogy",main="")

abline(v=mean(mslengths[,2]),col="blue",lwd=2)

par(mfrow=c(1,1))

For interpretation, the time is expressed in units of 4𝑁0 generations, where
𝑁0 is the population size at point 𝑡 = 0 in the model. Therefore, the
estimated coalescent time has to be multiplied by two.

ñ Exercise

Increase the number of alleles. How does the average time to theMRCA
and the average total length of the genealogy change?

Coalescent simulation

Next we will simulate data sets with a given 𝜃𝑊 = 15:

sim <- ms(25, 1000, paste("-t", 15)) # Simulate 1000 data sets

seq <- read.ms.output(sim, is.file = FALSE) # Split different types of information

gametes <- seq$gametes # Take only the gamete information

We need to recode the output into a DNAbin object (convert the simulations
into DNA sequence alignments).

TODO: Give info about length of simulated sequence

f.recode <- function(m){ # Function to recode sequence as mock DNA sequence

m[m==0] <- "a"

m[m==1] <- "c"

as.DNAbin(t(m))

}

gametesseq <- lapply(gametes, f.recode) # Recode the sequences produced by ms

Now we can calculate various statistics for the simulated data sets and plot
their distributions.

We first plot the number of segregating sites in each simulation.

library(ggplot2)

# Compute segregating-site counts from each simulation

seg_counts <- sapply(gametesseq, function(y) length(seg.sites(y)))

df <- data.frame(seg_sites = seg_counts)
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# ggplot2 histogram

ggplot(df, aes(x = seg_sites)) +

geom_histogram(bins = 20, fill = "gray", color = "black") +

labs(

title = "Histogram of segregating sites per simulation",

x = "Segregating sites",

y = "Frequency"

) +

theme_minimal()

When we plot the distribution of the Watterson estimator 𝜃𝑊 for each data
set, we can also add the value of 𝜃𝑊 that we used as input parameter:

# Compute Watterson's theta for each simulation

theta_vals <- sapply(gametesseq, theta.s)

df_theta <- data.frame(theta = theta_vals)

# ggplot2 histogram with vertical line at theta = 15

ggplot(df_theta, aes(x = theta)) +

geom_histogram(bins = 20, fill = "gray", color = "black") +

geom_vline(xintercept = 15, color = "blue", linewidth = 0.2) +

geom_vline(xintercept = mean(df_theta$theta, color= "red", linewidth=0.2))

labs(

title = "Histogram of Watterson's estimator",

x = expression(theta),

y = "Frequency"

) +

theme_minimal()

And the same for the nucleotide diversity 𝜋:

hist(sapply(gametesseq,function(x){nuc.div(x)*ncol(x)}),breaks=20,

main="Histogram of nucleotide diversity, pi", xlab = expression(pi))

abline(v=15,col="blue")

# Compute nucleotide diversity times sequence length for each simulation

pi_values <- sapply(gametesseq, function(x) nuc.div(x) * ncol(x))

df_pi <- data.frame(pi = pi_values)

# ggplot2 histogram with a vertical line at pi = 15

ggplot(df_pi, aes(x = pi)) +

geom_histogram(bins = 20, fill = "gray", color = "black") +

geom_vline(xintercept = 15, color = "blue", size = 1) +

labs(

title = "Histogram of nucleotide diversity, pi",

x = expression(pi),

y = "Frequency"

) +

theme_minimal()
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ñ Exercise

1. [Difficult] The values of 𝜃𝑊 and 𝜋 are rather high. Do you have an
explanation why this could be the case? Hint: Inspect the DNAbin
object and check for example the length of the simulated DNA
sequence.

2. Does the input value of 𝜃𝑊 fit with the distributions? Why? Why
not?
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